Visually Lossless Threshold: JPEG 2000 compression of Digital Chest Radiographs

JPEG 2000으로 압축한 디지털 흉부 X선 사진의 시각적 손실 없는 압축률

  • Kim, Gyoung-Min (Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital) ;
  • Kim, Kil-Joong (Department of Radiation Applied Life Science, Seoul National University College of Medicine)
  • 김경민 (서울대학교병원 영상의학과, 서울대학교 의과대학 영상의학교실) ;
  • 김길중 (서울대학교 의과대학 방사선응용생명과학 협동과정)
  • Received : 2010.04.30
  • Accepted : 2010.07.07
  • Published : 2010.10.01

Abstract

Purpose: To estimate the visual lossless threshold of Joint Photographic Experts Group (JPEG) 2000 compression digital chest radiograph images. Materials and Methods: Fifty (n=50) selected chest radiograph images were compressed to 5 different levels: reversible (as negative control) and irreversible 5:1, 10:1, 15:1, and 20:1. By alternately displaying the original image and its paired compressed image on the same monitor, five radiologists independently determined if the image pairs had detectable differences. For each reader, we compared the proportion of the image pairs (the compressed image and the original image) rated to have detectable differences between reversible compression and each of the four irreversible compressions using the exact test for paired proportions. Results: For each reader, the proportion of the image pairs rated to have detectable difference was not significantly different between the reversible and irreversible 5:1 and 10:1 compressions. However, the proportion significantly increased with 15:1 and 20:1 irreversible compressions, versus reversible compression in all readers ($p=7.4{\times}10^{-22}-0.027$). Conclusion: 10:1 compressed chest radiograph images can be considered visually lossless and are therefore potentially acceptable for primary interpretation.

목적: JPEG 2000으로 압축한 디지털 흉부 X선 사진의 시각적 손실 없는 압축률을 추정한다. 대상과 방법: 50장의 디지털 흉부 X선 사진을 선택하여 다섯 수준 (가역적(대조군), 비가역적 5:1, 10:1, 15:1, 20:1)으로 압축하였다. 동일한 모니터 상에 짝지워진 원본 영상과 압축 영상을 교대로 표시하여, 5명의 영상의학과 의사가 독립적으로 압축된 영상과 원본 영상 사이에 차이가 있는지를 결정하게 하였다. 각각의 판독자에서 가역적 압축 및 4 수준의 비가역적 압축에 대하여 원본 영상과 압축 영상 사이에 차이가 있다고 판정한 분율을 짝지워진 분율에 대한 정확 검정을 이용하여 비교하였다. 결과: 각 판독자에 대하여, 가역적 및 5:1, 10:1 압축 사이에서는 원본 영상과 압축 영상 사이에 차이가 있다고 판정한 분율에 통계적으로 유의한 차이가 없었다. 그러나 그 분율은 15:1 및 20:1 압축 영상에서 모든 판독자에 대하여 유의하게 증가하였다 (p=0.027 - p=$7.4{\times}10^{-22}$). 결론: 10:1로 압축된 흉부 X선 사진은 시각적으로 손실이 없는 것으로 간주할 수 있으며, 따라서 잠재적으로 일차 판독에 사용할 수 있을 것이다.

Keywords

Acknowledgement

Supported by : Seoul National University Bundang Hospital

References

  1. Rubin GD. Data explosion: the challenge of multidetector-row CT. Eur J Radiol 2000;36:74-80 https://doi.org/10.1016/S0720-048X(00)00270-9
  2. Rubin GD. 3-D imaging with MDCT. Eur J Radiol 2003;45 Suppl 1:S37-S41 https://doi.org/10.1016/S0720-048X(03)00035-4
  3. Tamm EP, Thompson S, Venable SL, McEnery K. Impact of multislice CT on PACS resources. J Digit Imaging 2002;15 Suppl 1:96- 101 https://doi.org/10.1007/s10278-002-5004-2
  4. Lee KH, Lee HJ, Kim JH, Kang HS, Lee KW, Hong H, et al. Managing the CT data explosion: initial experiences of archiving volumetric datasets in a mini-PACS. J Digit Imaging 2005;18:188-195 https://doi.org/10.1007/s10278-005-5163-z
  5. Ko JP, Rusinek H, Naidich DP, McGuinness G, Rubinowitz AN, Leitman BS, et al. Wavelet compression of low-dose chest CT data: effect on lung nodule detection. Radiology 2003;228:70-75 https://doi.org/10.1148/radiol.2281020254
  6. Ko JP, Chang J, Bomsztyk E, Babb JS, Naidich DP, Rusinek H. Effect of CT image compression on computer-assisted lung nodule volume measurement. Radiology 2005;237:83-88 https://doi.org/10.1148/radiol.2371041079
  7. Ishigaki T, Sakuma S, Ikeda M, Itoh Y, Suzuki M, Iwai S. Clinical evaluation of irreversible image compression: analysis of chest imaging with computed radiography. Radiology 1990;175:739-743 https://doi.org/10.1148/radiology.175.3.2343125
  8. Kido S, Ikezoe J, Kondoh H, Takeuchi N, Johkoh T, Kohno N, et al. Detection of subtle interstitial abnormalities of the lungs on digitized chest radiographs: acceptable data compression ratios. AJR Am J Roentgenol 1996;167:111-115 https://doi.org/10.2214/ajr.167.1.8659352
  9. MacMahon H, Doi K, Sanada S, Montner SM, Giger ML, Metz CE, et al. Data compression: effect on diagnostic accuracy in digital chest radiography. Radiology 1991;178:175-179 https://doi.org/10.1148/radiology.178.1.1984299
  10. Mori T, Nakata H. Irreversible data compression in chest imaging using computed radiography: an evaluation. J Thorac Imaging 1994;9:23-30 https://doi.org/10.1097/00005382-199424000-00004
  11. Ohgiya Y, Gokan T, Nobusawa H, Hirose M, Seino N, Fujisawa H, et al. Acute cerebral infarction: effect of JPEG compression on detection at CT. Radiology 2003;227:124-127 https://doi.org/10.1148/radiol.2271020067
  12. Slone RM, Foos DH, Whiting BR, Muka E, Rubin DA, Pilgram TK, et al. Assessment of visually lossless irreversible image compression: comparison of three methods by using an image-comparison workstation. Radiology 2000;215:543-553 https://doi.org/10.1148/radiology.215.2.r00ap47543
  13. Slone RM, Muka E, Pilgram TK. Irreversible JPEG compression of digital chest radiographs for primary interpretation: assessment of visually lossless threshold. Radiology 2003;228:425-429 https://doi.org/10.1148/radiol.2282011998
  14. Ringl H, Schernthaner RE, Kulinna-Cosentini C, Weber M, Schaefer-Prokop C, Herold CJ, et al. Lossy three-dimensional JPEG2000 compression of abdominal CT images: assessment of the visually lossless threshold and effect of compression ratio on image quality. Radiology 2007;245:467-474 https://doi.org/10.1148/radiol.2452061713
  15. Daly S. Application of a noise-adaptive contrast sensitivity function to image data compression. Opt Eng 1990;29:977-987 https://doi.org/10.1117/12.55666
  16. Aberle DR, Gleeson F, Sayre JW, Brown K, Batra P, Young DA, et al. The effect of irreversible image compression on diagnostic accuracy in thoracic imaging. Invest Radiol 1993;28:398-403 https://doi.org/10.1097/00004424-199305000-00002
  17. Savcenko V, Erickson BJ, Palisson PM, Persons KR, Manduca A, Hartman TE, et al. Detection of subtle abnormalities on chest radiographs after irreversible compression. Radiology 1998;206:609- 616 https://doi.org/10.1148/radiology.206.3.9494474
  18. Kalyanpur A, Neklesa VP, Taylor CR, Daftary AR, Brink JA. Evaluation of JPEG and wavelet compression of body CT images for direct digital teleradiologic transmission. Radiology 2000;217: 772-779 https://doi.org/10.1148/radiology.217.3.r00nv22772
  19. Hansell DM, Bankier AA, MacMahon H, McLoud TC, Muller NL, Remy J. Fleischner Society: glossary of terms for thoracic imaging. Radiology 2008;246:697-722 https://doi.org/10.1148/radiol.2462070712
  20. Kim KJ, Kim B, Choi SW, Kim YH, Hahn S, Kim TJ, et al. Definition of compression ratio: difference between two commercial JPEG2000 program libraries. Telemed J E Health 2008;14:350- 354 https://doi.org/10.1089/tmj.2007.0067
  21. Lee KH, Kim YH, Kim BH, Kim KJ, Kim TJ, Kim HJ, et al. Irreversible JPEG 2000 compression of abdominal CT for primary interpretation: assessment of visually lossless threshold. Eur Radiol 2007;17:1529-1534 https://doi.org/10.1007/s00330-006-0509-6
  22. Woo HS, Kim KJ, Kim TJ, Hahn S, Kim B, Kim YH, et al. JPEG 2000 compression of abdominal CT: difference in tolerance between thin- and thick-section images. AJR Am J Roentgenol 2007;189:535-541 https://doi.org/10.2214/AJR.07.2304
  23. Kim KJ, Kim B, Lee KH, Kim TJ, Mantiuk R, Kang HS, et al. Regional difference in compression artifacts in low-dose chest CT images: effects of mathematical and perceptual factors. AJR Am J Roentgenol 2008;191:W30-37 https://doi.org/10.2214/AJR.07.3462
  24. Kim B, Lee KH, Kim KJ, Mantiuk R, Kim HR, Kim YH. Artifacts in slab average-intensity-projection images reformatted from JPEG 2000 compressed thin-section abdominal CT data sets. AJR Am J Roentgenol 2008;190:W342-W350 https://doi.org/10.2214/AJR.07.3405
  25. Kim B, Lee KH, Kim KJ, Mantiuk R, Hahn S, Kim TJ, et al. Prediction of perceptible artifacts in JPEG 2000-compressed chest CT images using mathematical and perceptual quality metrics. AJR Am J Roentgenol 2008;190:328-334 https://doi.org/10.2214/AJR.07.2502
  26. Kim TJ, Lee KH, Kim B, Kim KJ, Chun EJ, Bajpai V, et al. Regional variance of visually lossless threshold in compressed chest CT images: lung versus mediastinum and chest wall. Eur J Radiol 2009; 69:483-488 https://doi.org/10.1016/j.ejrad.2007.11.035
  27. Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 1998;17:857-872 https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
  28. Liddell FD. Simplified exact analysis of case-referent studies: matched pairs; dichotomous exposure. J Epidemiol Community Health 1983;37:82-84 https://doi.org/10.1136/jech.37.1.82
  29. Fleiss JL, Cuzick J. The reliability of dichotomous judgements: unequal numbers of judges per subjects. Appl Psychol Meas 1979;3: 537-542 https://doi.org/10.1177/014662167900300410
  30. Erickson BJ, Manduca A, Palisson P, Persons KR, Earnest F 4th, Savcenko V, et al. Wavelet compression of medical images. Radiology 1998;206:599-607 https://doi.org/10.1148/radiology.206.3.9494473