유방암에서 $^{18}F$-Fluorodeoxyglucose (FDG) 섭취도에 영향을 미치는 요인들

Factors Affecting $^{18}F$-Fluorodeoxyglucose (FDG) Uptake in Breast Cancer

  • 정선혜 (순천향대학교 부천병원 영상의학과) ;
  • 이은혜 (순천향대학교 부천병원 영상의학과) ;
  • 박정미 (순천향대학교 부천병원 핵의학과) ;
  • 이혜경 (순천향대학교 부천병원 영상의학과) ;
  • 이범하 (순천향대학교 부천병원 영상의학과) ;
  • 최나미 (건국대학교병원 영상의학과)
  • Jeong, Sun-Hye (Department of Radiology, Soonchunhyang University Bucheon Hospital) ;
  • Lee, Eun-Hye (Department of Radiology, Soonchunhyang University Bucheon Hospital) ;
  • Park, Jung-Mi (Department of Nuclear Medicine, Soonchunhyang University Bucheon Hospital) ;
  • Lee, Hae-Kyung (Department of Radiology, Soonchunhyang University Bucheon Hospital) ;
  • Yi, Boem-Ha (Department of Radiology, Soonchunhyang University Bucheon Hospital) ;
  • Choi, Na-Mi (Department of Radiology, Konkuk University Hospital)
  • 투고 : 2009.09.08
  • 심사 : 2010.06.20
  • 발행 : 2010.09.01

초록

목적: 유방암의 $^{18}F$-Fluorodeoxyglucose (FDG) 섭취도에 영향을 미치는 요인들을 알아보고자 하였다. 대상과 방법: 2006년 4월부터 3년간 본원에서 positron emission tomography/computed tomography (PET/CT)를 시행한 유방암환자 180명(평균나이, 48세)의 187개 병변을 대상으로 하였다. PET/CT는 이중 검출기가 장착된 장비(Biograph2, Siemens)를 이용하였다. 최대 표준섭취계수(peak standardized uptake value, 이하 pSUV)와 조직학적 유형(n=187), 등급(n=142), 병변의 크기(n=153)간의 관계를 분석하였다. 결과: 조직학적 유형은 침습관상피암 156개, 관상피내암 10개, 유두암과 점액암 각각 6개, 침습소엽암 4개, 수질암 3개였으며, 그밖에 화생성암, 신경내분비암이 각각 1개였다. 조직학적 유형에 따라 pSUV에 차이가 있었다(p < 0.005). 등급을 알 수 있었던 침습관상피암 142개는 1등급 25개, 2등급 66개, 3등급 51개였으며 침습관상피암의 등급이 높을수록 pSUV가 높았다(rho=0.41, p < 0.001). 전반적으로 유방암의 조직학적 유형에 관계없이 병변이 클수록 pSUV가 높았다(rho=0.525, p < 0.001). 침습관상피암은 저등급에서는 크기가 클수록 pSUV가 높았지만(rho=0.48-0.86, p < 0.001) 고등급에서는 크기와 pSUV 사이에 상관관계를 보이지 않았다(p > 0.001). 결론: 유방암의 조직학적 유형에 상관없이 병변이 클수록 pSUV가 높았다. 침습관상피암은 등급이 높을수록 pSUV가 높았다. 저등급 침습관상피암에서는 병변이 클수록 pSUV가 높았으나 고등급은 크기와 pSUV간에 상관관계가 없었다.

Purpose: To evaluate factors affecting $^{18}F$-Fluorodeoxyglucose (FDG) uptake in breast cancer. Materials and Methods: For 3 years from 2006, 180 patients (mean age 48-years-old) with 187 breast cancers underwent positron emission tomography-computed tomography (PET/CT; biograph2, Siemens) at our institute and were enrolled in this study. We evaluated whether there was a correlation between the peak standardized uptake value (pSUV) of PET/CT and the histologic type of the breast cancers (n=187), grade of the invasive ductal cancers (n=142), and tumor size (n=153). Results: The different histologic types of breast cancers include IDCs (n=156), in situ ductal carcinoma (n=10), papillary cancer (n=6), mucinous cancer (n=6), invasive lobular cancer (n=4), medullary cancer (n=3), metaplastic cancer (n=1), and neuroendocrine cancer (n=1). pSUV showed significant differences according to histologic type (p<0.005). For the available cases (n=142), IDCs were classified as grade 1 (n=25), grade 2 (n=66), and grade 3 (n=51) and correlated with the histologic grade of IDCs (rho=0.41, p<0.001). pSUV was correlated with tumor size regardless of histologic type (rho=0.525, p<0.001). In low grade IDCs, pSUV was correlated with tumor size (rho=0.48-0.86, p<0.001), but not in high grade IDCs (p>0.001). Conclusion: Regardless of histologic type, the larger the breast cancer, the higher the pSUV; in addition, the higher the grade of IDCs, the higher the pSUV. For the low grade IDCs, pSUV is correlated with tumor size; however, this is not the case in high grade IDCs.

키워드

참고문헌

  1. 오기근, 문우경, 손은주, 김미혜, 정수영, 고경란 등. 유방질환의 영상검사. In 정수영, 한부경, 대한유방영상의학회. 유방영상진단학. 일조각. 2008:121
  2. Rosen EL, Eubank WB, Mankoff DA, FDG PET, PET/CT, and breast cancer imaging. Radiographics 2007;27:S215-S229 https://doi.org/10.1148/rg.27si075517
  3. Lim HS, Yoon W, Chung TW, Kim JK, Park JG, Kang HK, et al. FDG PET/CT for the detection and evaluation of breast diseases: usefulness and limitations. Radiographics 2007;27:S197-S213 https://doi.org/10.1148/rg.27si075507
  4. Noh DY, Yun IJ, Kim JS, Kang HS, Lee DS, Chung JK, et al. Diagnostic value of positron emission tomography for detecting breast cancer. World J Surg 1998;22:223-228 https://doi.org/10.1007/s002689900374
  5. Wahl RL, Cody RL, Hutchins GD, Mudgett EE. Primary and metastatic breast carcinoma: initial clinical evaluation with PET with the radiolabeled glucose analogue 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 1991;179:765-770 https://doi.org/10.1148/radiology.179.3.2027989
  6. Crowe JP, Adler LP, Shenk RR, Sunshine J. Positron emission tomography and breast masses comparison with clinical, mammographic, and pathological findings. Ann Surg Oncol 1994;1:132-140 https://doi.org/10.1007/BF02303557
  7. Moon DH, Maddahi J, Silverman DH, Glaspy JA, Phelps ME, Hoh CK. Accuracy of whole-body fluorine-18-FDG PET for the detection of recurrent or metastatic breast carcinoma. J Nucl Med 1998; 39:431-435
  8. Palmedo H, Bender H, Grunwald F, Mallmann P, Zamora P, Krebs D, et al. Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and technetium-99 m methoxyisobuty lisonitrile scintimammography in the detection of breast tumours. Eur J Nucl Med 1997;24:1138-1145
  9. Kumar R, Chauhan A, Zhuang H, Chandra P, Schnall M, Alavi A. Clinicopathologic factors associated with false negative FDG-PET in primary breast cancer. Breast Cancer Res Treat 2006;98:267-274 https://doi.org/10.1007/s10549-006-9159-2
  10. Avril N, Rose CA, Schelling M, Dose J, Kuhn W, Bense S, et al. Breast imaging with positron emission tomography and fluorine-18 fluorodeoxyglucose: use and limitations. J Clin Oncol 2000;18: 3495-3502
  11. Samson DJ, Flamm CR, Pisano ED, Aronson N. Should FDG PET be used to decide whether a patient with an abnormal mammogram or breast finding at physical examination should undergo biopsy? Acad Radiol 2002;9:773-783 https://doi.org/10.1016/S1076-6332(03)80347-1
  12. Adler LP, Crowe JP, al-Kaisi NK, Sunshine JL. evaluation of breast masses and axillary lymph nodes with [F-18] 2-deoxy-2- fluoro-D-glucose PET. Radiology 1993;187:743-750
  13. Schirrmeister H, Kuhn T, Guhlmann A, Santjohanser C, Horster T, Nussel K, et al. Fluorine-182-deoxy-2-fluoro-D-glucose PET in the preoperative staging of breast cancer: comparison with the standard staging procedures. Eur J Nucl Med 2001;28:351-358 https://doi.org/10.1007/s002590000448
  14. Kumar R, Alavi A. Fluorodeoxyglucose-PET in the management of breast cancer. Radiol Clin North Am 2004;42:1113-1122 https://doi.org/10.1016/j.rcl.2004.08.005
  15. Eubank WB, Mankoff DA. Evolving role of positron emission tomography in breast cancer imaging. Semin Nucl Med 2005;35:84-99 https://doi.org/10.1053/j.semnuclmed.2004.11.001
  16. Crippa F, Seregni E, Agresti R, Chiesa C, Pascali C, Bogni A, et al. Association between [$^{18}F$]fluorodeoxyglucose uptake and postoperative histopathology, hormone receptor status, thymidine labelling index and p53 in primary breast cancer: a preliminary observation. Eur J Nucl Med 1998;25:1429-1434 https://doi.org/10.1007/s002590050319
  17. Avril N, Menzel M, Dose J, Schelling M, Weber W, Janicke F, et al. Glucose metabolism of breast cancer assessed by $^{18}F$-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med 2001;42:9-16
  18. Buck A, Schirrmeister H, Kuhn T, Shen C, Kalker T, Kotzerke J, et al. FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. Eur J Nucl Med Mol Imaging 2002; 29:1317-1323 https://doi.org/10.1007/s00259-002-0880-8
  19. Buck A, Schirrmeister H, Mattfeldt T, Reske SN. Biological characterisation of breast cancer by means of PET. Eur J Nucl Med Mol Imaging 2004;31 Suppl 1:S80-S87 https://doi.org/10.1007/s00259-004-1529-6
  20. 유정현, 최혜영, 안세현. 유방X-선 촬영술에서 오진한 유방암의 후향적 연구. 대한방사선의학회지 1995;32:501-506
  21. 박현주, 한 현, 임달모, 정효선, 김지은, 김영채. 유방암의 X-선유방 촬영술 소견의 분석. 대한방사선의학회지 1995;32:337-342