The change of air lead concentrations in litharge making and smelting industries

일부 제련 및 리사지 사업장에서 공기중 납 노출농도의 변화

  • Choi, Jae-Wook (Institute of Environmental and Occupational Medicine, Soonchunhyang University) ;
  • Kim, Nam-Soo (Institute of Environmental and Occupational Medicine, Soonchunhyang University) ;
  • Cho, Kwang-Sung (Institute of Environmental and Occupational Medicine, Soonchunhyang University) ;
  • Ham, Jung-O (Department of Occupational Medicine, Soonchunhyang University Hospital) ;
  • Lee, Byung-Kook (Institute of Environmental and Occupational Medicine, Soonchunhyang University)
  • 최재욱 (순천향대학교 환경산업의학연구소) ;
  • 김남수 (순천향대학교 환경산업의학연구소) ;
  • 조광성 (순천향대학교 환경산업의학연구소) ;
  • 함정오 (순천향대학교 천안병원 산업의학과) ;
  • 이병국 (순천향대학교 환경산업의학연구소)
  • Received : 2009.10.17
  • Accepted : 2010.01.14
  • Published : 2010.03.30

Abstract

To provide necessary information for future environmental monitoring of smelting and litharge making industries in Korea, environmental monitoring dataset of air lead concentration of 4 lead industries(1 primary smelting, 2 secondary smelting and 1 litharge making industry) were analyzed from 1994 to 2007. Data were compared using geometric mean and standard deviation with minimum and maximum values according to year of measurement, type of lead industries and type of operation of lead industries. The geometric mean and standard deviation of air concentration for a total of 1140 samples in all lead industries for overall 14 years were 70.7${\mu}g/m^3$ and 5.51 with minimum of 1${\mu}g/m^3$ and maximum of 9,185 ${\mu}g/m^3$. The overall geometric means of air concentration were above the permissible exposure levels(PEL) until year of 2001 and thereafter they were remained at the level of half of PEL. The geometric means of primary smelting, secondary smelting and litharge making industry for overall 14 years were 21.7${\mu}g/m^3$(number of samples: 353), 82.5${\mu}g/m^3$(number of samples: 357) and 164.2 ${\mu}g/m^3$(number of samples: 430) respectively. In primary smelting industry, the highest geometric mean air concentration was 35.4 ${\mu}g/m^3$ in the secondary smelting operation; followed by casting operation (24.9 ${\mu}g/m^3$) and melting operation (14.9 ${\mu}g/m^3$), respectively. On the other hand, in secondary smelting industries, the highest geometric mean air concentration was 125.4${\mu}g/m^3$ in melting operation; followed by casting operation (90.5${\mu}g/m^3$) and pre-treatment operation (43.4${\mu}g/m^3$), respectively. However, in litharge making industries, there were no significant differences of geometric mean air concentrations between litharge operation and stabilizer operation. The proportion of over PEL (50${\mu}g/m^3$) was highest in litharge industry and followed by secondary smelting industries. However The proportions of over PEL(${\mu}g./m^3.$) were decreased by the years of environmental monitoring. The significant reduction of mean air lead concentration since year of 2000 was observed due to more active environmental engineering control and new introduction of new operation in manufacturing process, but may be also influenced by non-engineering method such as reduction of operation hours or reduction of exposure time during actual environmental measurement by industrial hygienist according to more strict enforcement of occupational and safety law by the government.

Keywords

References

  1. 강명식,김용배,이용진,리갑수,김화성 등. 모 축전지 회사 근로자들의 연 폭로지표에 대한 경시적 관찰. 순천향 산업의학 1998;4(1): 1-14
  2. 김형수, 장성훈, 이원진, 최재욱, 박종태 등. 연 폭로가 남성호르몬에 미치는 영향, 대한산업의학회지 2001; 13(1): 44-54
  3. 노동부. 유해물질의 허용농도(고시 제88-69호). 노동부, 1988
  4. 노동부. 화학물질 및 물리적인자의 노출기준(고시 제2007-25호). 노동부, 2007
  5. 순천향산업의학연구소. 연사업장 근로자 건강관리 세미나. 2007; 12: 59-66
  6. 심윤보,이병국. 연취급 근로자들의 건강증진에 미치는 호흡용 보호구 및 생물학적 모니터링의 효과. 대한산업의학회지 1991;4(1):1-13
  7. 이병국, 김용배, 리갑수, 안현철, 김화성 등. 업종에 따른 연 취급 사업자의 기중 연 농도 및 연 노출 수준 평가. 순천향산업의학 1999;5(1): 1-13
  8. 이병국. 연 취급 사업장의 전담관리 현황과 유해인자별 전담관리의 필요성. 직업병 전문기관 합동 회지 결과보고서. 한국산업안전공단 산업보건연구원 1992,9-22
  9. 이성수,김진호,김남수,김화성,안규동. 납 작업자들에서 ALAD 유전자형과 신기능과의 연관성, 대한산업의학회지 2004; 16(2): 200-209
  10. 임정규, 안규동, 이병국. 연 작업자들의 업종별 보건관리에 의한 건강수준의 변화. 순천향산업의학 1996; 2(1): 27-52
  11. 조광성. 축전지 제조업에서 공기중 납 노출기준 초과에 영향을 주는 요인에 관한조사. 순천향대학교 석사학위논문, 순천향대학교산업정보대학원, 1999
  12. 최승현,김남수,김진호,조광성,함정오 등. 축전지 사업장에서 공기 중 납 농도의 변화에 관한 연구. 한국산업위생학회지 2007;17(4): 261-271
  13. 채제명,리갑수,이성수,안규동,이병국. 이차 제련 및 리사지업종 근로자들의 연폭로에 관한 연구. 대한산업의학회지 1997; 9(1): 131-139
  14. 한국산업안전공단. 보건분야 보고서(유해인자에 의한 건강영향과 관리-납). 연구원 2003-41-268
  15. ASTOR, Toxicological Profile for Lead. Washington DC, US. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry; 1999
  16. Cheng Y, Schwartz J, Sparrow D, Aro A, Weiss ST, Hu H. Bone lead and blood lead levels in relation to baseline blood pressure and the prospective development of hypertension: the normative aging study, Am J Epidemiol 2001; 153(2); 164-71. https://doi.org/10.1093/aje/153.2.164
  17. Lanphear BP. Dietrich KN, Auinger P. Cox C. Cognitive deficits associated with blood lead concentrations < 10 micog/dL in US children and adolescents. Public Health Rep. 2000; 115; 521-9. https://doi.org/10.1093/phr/115.6.521
  18. Lidsky TI, Schneider JS. Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 2003; 126: 5-19. https://doi.org/10.1093/brain/awg014
  19. Lee BK. Lead poisoning in Korea. Korea J of Occup Health 1991; 30; 1-9
  20. Lee BK. The role of biological monitoring in the health management of lead-exposed workers. Toxicology letters 1999; 108: 149-160 https://doi.org/10.1016/S0378-4274(99)00083-1
  21. Mahaffey KR. Biotoxicity of lead: influence of various factors, Fed Proc 1983; 42:1730-1734
  22. OSHA, Regulations(Standards-29 CFR) Lead-1910-1025, U.S. Department of Labor; 2006
  23. Tsaih SW, Korrick S, Schwartz J, Amarasiriwardena C, Aro A, Sparrow D, Hu H. Lead, diabetes, hypertension, and renal function: the normative aging study. Environ Health Perspect 2004; 112: 1178-82. https://doi.org/10.1289/ehp.7024
  24. Zenz C. Occupational Medicine, Chicago: Year Book Medical Publishers Inc.; 1988. p.547-582.