DOI QR코드

DOI QR Code

Numerical analyses of the force transfer in concrete-filled steel tube columns

  • Starossek, Uwe (Structural Analysis and Steel Structures Institute, Hamburg University of Technology (TUHH)) ;
  • Falah, Nabil (Structural Analysis and Steel Structures Institute, Hamburg University of Technology (TUHH)) ;
  • Lohning, Thomas (Structural Analysis and Steel Structures Institute, Hamburg University of Technology (TUHH))
  • Received : 2008.09.03
  • Accepted : 2010.01.18
  • Published : 2010.05.30

Abstract

The interaction between steel tube and concrete core is the key issue for understanding the behavior of concrete-filled steel tube columns (CFTs). This study investigates the force transfer by natural bond or by mechanical shear connectors and the interaction between the steel tube and the concrete core under three types of loading. Two and three-dimensional nonlinear finite element models are developed to study the force transfer between steel tube and concrete core. The nonlinear finite element program ABAQUS is used. Material and geometric nonlinearities of concrete and steel are considered in the analysis. The damage plasticity model provided by ABAQUS is used to simulate the concrete material behavior. Comparisons between the finite element analyses and own experimental results are made to verify the finite element models. A good agreement is observed between the numerical and experimental results. Parametric studies using the numerical models are performed to investigate the effects of diameterto-thickness ratio, uniaxial compressive strength of concrete, length of shear connectors, and the tensile strength of shear connectors.

Keywords

References

  1. Begum, M., Driver, G.R. and Elwi, E.A. (2007), "Finite-element modeling of partially encased composite columns using the dynamic explicit method", J. Struct. Eng-ASCE, 133(3), 326-334. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:3(326)
  2. Bussler, T. (2007), "Numerische Untersuchungen zum Tragverhalten von Schubbolzen in Verbundstutzen (Numerical investigations on the structural behavior of shear studs in composite columns)", Diplomarbeit, Hamburg University of Technology, Germany.
  3. Chen, W.F. (1982), Plasticity in Reinforced Concrete, McGraw-Hill, New York.
  4. Ellobody, E. (2007), "Nonlinear behavior of concrete-filled stainless steel stiffened slender tube columns", Thin Wall. Struct., 45(3), 259-273. https://doi.org/10.1016/j.tws.2007.02.011
  5. Falah, N. (2008), "The interaction of steel tube and concrete core in concrete-filled steel tube columns", Doctoral Thesis in Preparation.
  6. HKS (2007), ABAQUS/Standard User's Manual, Version 6.7, Hibbit, Karlsson & Sorensen, Inc., Pawtucket, USA.
  7. Hu, H.T., Huang, C.S. and Wu, M.H. (2003), "Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect", J. Struct. Eng-ASCE, 129(10), 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322)
  8. Johansson, M. (2003), "Composite action in connection regions of concrete-filled steel tube columns", Steel Compos. Struct., 3(1), 47-64. https://doi.org/10.12989/scs.2003.3.1.047
  9. Johansson, M., Claeson, C., Akesson, M. and Gylltoft, K. (2000), "Stuctural behavior of circular composite columns under various means of load application", Proceeding of 6th ASCCS Conference, Los Angeles, USA.
  10. Lam, D. and El-Lobody, E. (2005), "Behavior of head stud shear connectors in composite beam", J. Struct. Eng-ASCE, 131(1), 96-107. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(96)
  11. Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
  12. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damaged model for concrete", Int. J. Solids Struct., 25(3), 299-329. https://doi.org/10.1016/0020-7683(89)90050-4
  13. Morishita, Y., Tomii, M. and Yoshimura, K. (1979), "Experimental studies on bond strength in concrete-filled circular steel tubular columns subjected to axial loads", Trans. Japan Concrete Inst. Tokyo, 1, 351-358.
  14. Roeder, C.W., Chmielowski, R. and Brown, C.B. (1999), "Shear connector requirements for embedded steel sections", J. Struct. Eng-ASCE, 125(2), 142-152. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:2(142)
  15. Roeder, C.W., Cameron, B. and Brown, C.B. (1999), "Composite action in concrete-filled tubes", J. Struct. Eng-ASCE, 125(5), 477-484. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(477)
  16. Shakir-Khalil, H. (1991), "Bond strength in hollow concrete-filled steel hollow sections", Proceedings of the International Conference on Steel and Aluminum Structures. Composite Steel Structures, Singapore.
  17. Shakir-Khalil, H. (1993a), "Push-out strength of concrete-filled steel hollow sections", Struct. Eng., 71(13), 230-233, 243.
  18. Shakir-Khalil, H. (1993b), "Resistance of concrete-filled steel hollow tubes to pushout forces", Struct. Eng., 71(13), 234-243.
  19. Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng-ASCE, 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  20. Shams, M. and Saadeghvaziri, M.A. (2000), "Non-linear behavior of concrete-filled steel tubular columns under axial and lateral loadings", Proceeding of 6th ASCCS Conference, Los Angeles, USA.
  21. Starossek, U., Falah, N. and Löhning, T. (2008), "Numerical analyses of the force transfer in concrete-filled steel tube columns", Proceedings of 4th International Conference on Advances in Structural Engineering and Mechanics, Jeju, Korea, May.
  22. Starossek, U. and Falah, N. (2008), "Force transfer in concrete-filled steel tube columns", Proceedings of 5th European Conference on Steel and Composite Structures, Graz, Austria, September.
  23. Starossek, U. and Falah, N. (2008), "The interaction of steel tube and concrete core in concrete-filled steel tube columns", Proceedings of 12th International Symposium on Tubular Structures, Shanghai, China, October.
  24. Virdi, K.S. and Dowling, P.J. (1980), "Bond strength in concrete-filled steel tubes", IABSE, 33(80), 125-139.

Cited by

  1. Finite element study to address the axial capacity of the circular concrete-filled steel tubular stub columns 2018, https://doi.org/10.1016/j.tws.2017.06.005
  2. Analysis of grouted connections for offshore wind turbines vol.166, pp.4, 2013, https://doi.org/10.1680/ener.12.00009
  3. Lateral impact response of the concrete filled steel tube columns with and without CFRP strengthening vol.116, 2016, https://doi.org/10.1016/j.engstruct.2016.02.047
  4. Nonlinear Finite Element Analysis to the Circular CFST Stub Columns vol.173, 2017, https://doi.org/10.1016/j.proeng.2016.12.197
  5. Channel connections resistance at elevated temperatures vol.82, pp.193, 2015, https://doi.org/10.15446/dyna.v82n193.47152
  6. Experimental and Simulation Study of a Hybrid Frame Structure with Viscous Dampers vol.446-449, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.446-449.894
  7. Nonlinear analysis of concrete-filled steel composite columns subjected to axial loading vol.39, pp.3, 2011, https://doi.org/10.12989/sem.2011.39.3.383
  8. Simulation of the damping effect of a high-rise CRST frame structure vol.9, pp.4, 2012, https://doi.org/10.12989/cac.2012.9.4.245
  9. The 3D-numerical simulation on failure process of concrete-filled tubular (CFT) stub columns under uniaxial compression vol.9, pp.4, 2010, https://doi.org/10.12989/cac.2012.9.4.257
  10. Structural behaviour of tapered concrete-filled steel composite (TCFSC) columns subjected to eccentric loading vol.9, pp.6, 2010, https://doi.org/10.12989/cac.2012.9.6.403
  11. Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface vol.13, pp.3, 2010, https://doi.org/10.12989/scs.2012.13.3.277
  12. Experimental and analytical studies of base pipe pin connections under direct tension vol.195, pp.None, 2010, https://doi.org/10.1016/j.engstruct.2019.06.001
  13. Nonlinear analyses of steel beams and arches using virtual unit moments and effective rigidity vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.755
  14. Localised failure mechanism of concrete pedestals under bridge bearing vol.18, pp.2, 2020, https://doi.org/10.1080/14488353.2020.1752094
  15. Numerical Modeling of Recycled and Normal Aggregate CFRP-Strengthened Concrete-Filled Steel Columns Subjected to Lateral Impact vol.24, pp.5, 2010, https://doi.org/10.1061/(asce)cc.1943-5614.0001051
  16. Analytical Studies of a Novel Bridge Column-Footing Pipe Pin Connection under Lateral Loading vol.26, pp.2, 2021, https://doi.org/10.1061/(asce)be.1943-5592.0001664
  17. Flexural buckling performance of concrete-filled aluminium alloy tubular columns vol.242, pp.None, 2010, https://doi.org/10.1016/j.engstruct.2021.112546