Ozone Sensitivity of Physiological Indicators for Stress Evaluation in Four Families of Quercus aliena Blume

갈참나무 4가계에서 스트레스 평가용 생리 지표들의 오존 민감성

  • Kim, Du-Hyun (Department of Forest Resources Development, Korea Forest Research Institute) ;
  • Han, Sim-Hee (Department of Forest Resources Development, Korea Forest Research Institute) ;
  • Lee, Jae-Cheon (Department of Forest Resources Development, Korea Forest Research Institute)
  • 김두현 (국립산림과학원 산림자원육성부) ;
  • 한심희 (국립산림과학원 산림자원육성부) ;
  • 이재천 (국립산림과학원 산림자원육성부)
  • Received : 2010.08.20
  • Accepted : 2010.11.11
  • Published : 2010.12.30

Abstract

Ozone sensitivity of physiological indicators and the difference of ozone tolerance on 4 families of Quercus aliena seedlings were investigated on the basis of the standardized physiological indicators. Photosynthetic parameters, photosynthetic pigment and malondialdehyde (MDA) content, and antioxidative enzyme activities were measured or analyzed from the leaves of Q. aliena seedlings at the end of ozone fumigation, and ozone tolerance indices among 4 families were calculated with the standardized physiological parameters. After ozone treatment, the reduction of carboxylation efficiency was observed in the leaves of four families, and their reduction were ranged from -24.1% to -56.9% of control seedlings. Photosynthetic pigment content differed significantly among 4 families and treatments. The reduction of total chlorophyll content showed the highest in family SU4 (-40.6%) and the lowest family US2 (-18.8%). Ascorbate-peroxidase (APX) activity showed significant difference among families and treatments, and increased as compared with control in three families, except for family US2. On the basis of the physiological indices, ozone tolerance of four families was ranked in the order of US1 > SU4 > US2 > SU1. In conclusion, photosynthetic parameters, pigment content and APX activity were recommended as appropriate indicators to assess the tolerance against ozone stress of Q. aliena.

오존에 노출된 갈참나무 4가계의 오존 내성 차이와 생리적 지표들의 오존 민감성은 광합성 특성, 광색소 함량, MDA 함량 및 항산화효소 활성과 같은 생리적 지표들을 표준화하여 결정하였다. 오존 처리 후, 갈참나무의 잎내 탄소고정효율 감소는 4가계 모두에서 관찰되었으며, 그들의 감소율은 대조구의 -24.1%에서 -56.9% 범위를 보였다. 광색소 함량은 가계 간 및 처리 간 차이가 뚜렷하였으며, 총 엽록소 함량의 감소는 SU4 가계에서 가장 높았고 (-40.6%), US2 가계에서 가장 낮았다(-18.8%). APX 활성은 가계 간 및 처리 간 차이를 뚜렷하게 보였으며, US2 가계를 제외한 3가계에서 대조구보다 높게 나타났다. 생리적 지표들을 기준으로 한, 갈참나무 4가계의 오존 내성은 US1 > SU4 > US2 > SU1의 순으로 나타났다. 결론적으로 광합성 특성, 광색소 함량과 APX 활성은 갈참나무의 오존 스트레스 내성을 평가하는데 적절한 지표로 판단된다.

Keywords

References

  1. 김판기, 이은주. 2001. 광합성의 생리생태(1)- 광도와 엽 육내 $CO_2$ 분압 변화에 대한 광합성 반응. 한국농림기상학회지 3: 126-133.
  2. 김현석, 이경준. 1995. Open-top chamber 내에서 오존에 폭로시킨 1년생 느티나무 (Zelkova serrata Makino) 묘목의 생리적 반응에 관한 연구. 한국임학회지 84: 424-431.
  3. 한심희, 김두현. 2009. 표준화 지수를 이용한 환경수목의 오존 내성 결정. 한국농림기상학회지 11: 3-12.
  4. 환경부. 2008. 대기환경연보. 393pp.
  5. Calatayud, A., Ramirez, J.W., Iglesias, D.J. and Barreno, E. 2002. Effects of ozone on photosynthetic $CO_2$ exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiologia Plantarum 116: 308-316. https://doi.org/10.1034/j.1399-3054.2002.1160305.x
  6. Chappelka, A., Skelly, J., Somers, G., Renfro, R. and Hildebrand, E. 1999. Mature black cherry used as a bioindicator of ozone injury. Water Air and Soil Pollution 116: 261-266. https://doi.org/10.1023/A:1005260422738
  7. Coleman, M.D., Isebrands, J.G., Dickson, R.E. and Karnosky, D.F. 1995. Photosynthetic productivity of aspen clones varying in sensitivity to tropospheric ozone. Tree Physiology 15: 585-592. https://doi.org/10.1093/treephys/15.9.585
  8. Cooper, O.R., Parrish, D.D., Stohl, A., Trainer, M., Nedelec, P., Thouret, V., Cammas, J.P., Oltmans, S.J., Johnson, B.J., Tarasick, D., Leblanc, T., McDermid, I.S., Jaffe, D., Gao, R., Stith, J., Ryerson, T., Aikin, K., Campos, T., Weinheimer, A. and Avery, M.A. 2010. Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature 463: 344-348. https://doi.org/10.1038/nature08708
  9. Dizengremel, P., Thiec, D.L., Bagard, M. and Jolivet, Y. 2008. Ozone risk assessment for plants: Central role of metabolism-dependent changes in reducing power. Environmental Pollution 156: 11-15. https://doi.org/10.1016/j.envpol.2007.12.024
  10. Fares, S., Loreto, F., Kleist, E. and Wildt, J. 2008. Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants. Plant Biology 10: 44-54. https://doi.org/10.1055/s-2007-965257
  11. Fares, S., Park, J.H., Ormeno, E., Gentner, D.R., McKay, M., Loreto, F., Karlik, J. and Goldstein, A.H. 2010. Ozone uptake by citrus trees exposed to a range of ozone concentrations. Atmospheric Environment 44: 3404-3412. https://doi.org/10.1016/j.atmosenv.2010.06.010
  12. Gerosa, G., Marzuoli, R., Desotgiu, R., Bussotti, F. and Ballarin-Denti, A. 2008. Visible leaf injury in young trees of Fagus sylvatica L. and Quercus robur L. in relation to ozone uptake and ozone exposure. An Open-Top Chambers experiment in South Alpine. Environmental conditions. Environmental Pollution 152: 274-284. https://doi.org/10.1016/j.envpol.2007.06.045
  13. Han, S.H., Kim, D.H., Lee, J.C. and Kim, P.G. 2009. Effects of Fertilization on Physiological Parameters in American Sycamore(Platanus occidentalis) during Ozone Stress and Recovery Phase. Journal of Ecology and Field Biology 32: 149-158. https://doi.org/10.5141/JEFB.2009.32.3.149
  14. Han, S.H., Kim, D.H., Lee, K.Y., Ku, J.J. and Kim, P.G. 2007. Physiological damages and biochemical alleviation to ozone toxicity in five species of genus Acer. Journal of Korean Forest Society 96: 551-560.
  15. Heath, R.L. and Parker, L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125: 189-198. https://doi.org/10.1016/0003-9861(68)90654-1
  16. Hiscox, J.D. and Israelstam, G.F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57: 1332-1334. https://doi.org/10.1139/b79-163
  17. Iglesias, J.D., Calatayud, A., Barreno, E., Primo-Millo, E. and Talon, M. 2006. Responses of citrus plants to ozone: Leaf biochemistry, antioxidant mechanisms and lipid peroxidation. Plant Physiology and Biochemistry 44: 125-131. https://doi.org/10.1016/j.plaphy.2006.03.007
  18. Jones., M.L.M., Hayes, F., Mills, G., Sparks, T.H. and Fuhrer, J. 2007. Predicting community sensitivity to ozone, using Ellenberg Indicator values. Environmental Pollution 146: 744-753. https://doi.org/10.1016/j.envpol.2006.03.035
  19. Karnosky, D.F., Gagnon, Z.E., Dickson, R.E., Coleman, M.D., Lee, E.H. and Isebrands, J.G. 1996. Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposures of Populus tremuloides clones and seedlings. Canadian Journal of Forest Research 26: 23-37. https://doi.org/10.1139/x26-003
  20. Karnosky, D.F., Skelly, J.M., Percy, K.E. and Chappelka, A.H. 2007. Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environmental Pollution 147: 489-506. https://doi.org/10.1016/j.envpol.2006.08.043
  21. Kim, D.K., Han, S.H., Ku, J.J., Lee, K.Y. and Kim, P.G. 2008. Physiological and biochemical responses to ozone toxicity in five species of genus Quercus seedlings. Korean Journal of Agricultural and Forest Meteorology 10: 47-57. https://doi.org/10.5532/KJAFM.2008.10.2.047
  22. Lee, J.C., Oh, C.Y., Han, S.H. and Kim, P.G. 2006. Photosynthetic inhibition in leaves of Alianthus altissima under $O_3$ fumigation. Journal of Ecology and Field Biology 29: 41-47. https://doi.org/10.5141/JEFB.2006.29.1.041
  23. Nie, G.Y., Tomasevic, M. and Baker, N.R. 1993. Effects of ozone on the photosynthetic apparatus and leaf proteins during leaf development in wheat. Plant, Cell and Environment 16: 643-651. https://doi.org/10.1111/j.1365-3040.1993.tb00482.x
  24. Nowak, D.J. and Dwier, J.F. 2007. Understanding the benefits and costs of urban forest ecosystems. pp. 25-44. In: Kuser, J.E. (Eds). Urban and Community Forestry in the Northeast. Springer Netherlands.
  25. Pell, E.J., Eckardt, N.A. and Glick, R.E. 1994. Biochemical and molecular basis for impairment of photosynthetic potential. Photosynthesis Research 39: 453-462. https://doi.org/10.1007/BF00014598
  26. Ranieri, A., D'Urso, G., Nali, C., Lorenzini, G. and Soldatini, G.F. 1996. Ozone stimulates apoplastic antioxidant systems in pumpkin leaves. Physiologia Plantarum 97: 381-387. https://doi.org/10.1034/j.1399-3054.1996.970224.x
  27. Schaub, M., Skelly, J.M., Zhang, J.W., Ferdinand, J.A., Savage, J.E., Stevenson, R.E., Davis, D.D. and Steiner, K.C. 2005. Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone under forest conditions. Environmental Pollution 133: 553-567. https://doi.org/10.1016/j.envpol.2004.06.012
  28. Sheng, Y., Podila, G.K. and Karnosky, D.F. 1997. Differences in $O_3$-induced superoxide dismutase and glutathione antioxidant expression in $O_3$ tolerant and sensitive trembling aspen (Populus tremuloides Michx.) clones. Forest Genetics 4: 25-33.
  29. Yoshida, M., Nouchi, Y. and Toyama, S. 1994. Studies on the role of active oxygen in ozone in injury to plant cells. I. Generation of active oxygen in rice protoplast exposed to ozone. Plant Science 95: 197-205. https://doi.org/10.1016/0168-9452(94)90093-0