DOI QR코드

DOI QR Code

Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels

  • Kim, Y.S. (The Center for Green Materials Technology, School of Advanced Materials Engineering, Andong National University)
  • Received : 2010.02.01
  • Accepted : 2010.02.25
  • Published : 2010.02.01

Abstract

According to the bipolar model, ion selectivity of some species in the passive film is important factor to control the passivation. An increase of cation selectivity of outer layer of the passive film can stabilize the film and improves the corrosion resistance. Therefore, the formation and roles of ionic species in the passive film should be elucidated. In this work, two types of solution (hydrochloric or sulfuric acid) were used to test high N and Mo-bearing stainless steels. The objective of this work was to investigate the formation of oxyanions in the passive film and the roles of oxyanions in passivation of stainless steel. Nitrogen exists as atomic nitrogen, nitric oxide, nitro-oxyanions (${NO_x}^-$), and N-H species, not nitride in the passive film. Because of its high mobility, the enriched atomic nitrogen can act as a reservoir. The formation of N-H species buffers the film pH and facilitates the formation of oxyanions in the film. ${NO_x}^-$ species improve the cation selectivity of the film, increasing the oxide content and film density. ${NO_x}^-$ acts similar to a strong inhibitor both in the passive film and at active sites. This facilitates the formation of chromium oxide. Also, ${NO_x}^-$ can make more molybdate and nitric oxide by reacting with Mo. The role of Mo addition on the passivation characteristics of stainless steel may differ with the test environment. Mo exists as metallic molybdenum, molybdenum oxide, and molybdate and the latter facilitates the oxide formation. When nitrogen and molybdenum coexist in stainless steel, corrosion resistance in chloride solutions is drastically increased. This synergistic effect of N and Mo in a chloride solution is mainly due to the formation of nitro-oxyanions and molybdate ion. Oxyanions can be formed by a 'solid state reaction' in the passive film, resulting in the formation of more molybdate and nitric oxide. These oxyanions improve the cation selectivity of the outer layer and form more oxide and increase the amount of chromium oxide and the ratio of $Cr_2O_3/Cr(OH)_3$ and make the film stable and dense.

Keywords

References

  1. A. Hoshino, J. of ISIJ, 16, 2279 (1986).
  2. Y. S. Park and S. T. Kim, J. Corrosion Science Society of Korea, 12, 1 (1983).
  3. J. O. Nilsson, Materials Sci. and Tech., 8, 685 (1992). https://doi.org/10.1179/mst.1992.8.8.685
  4. Y. S. Park and Y. S. Kim, 13th International Corrosion Congress, Australia, paper No.384, Nov, 30 (1996).
  5. R.F.A.Jargelius-Pettersson, Corrosion, 54, 162 (1998). https://doi.org/10.5006/1.3284840
  6. I. Olefiord and L. Wegrelius, Corros. Sci., 38, 1203 (1996). https://doi.org/10.1016/0010-938X(96)00018-2
  7. Y. C. Lu, M. B. Ives, and C. R. Clayton, Corroe. Sci., 35, 89 (1993). https://doi.org/10.1016/0010-938X(93)90137-6
  8. C. O. A. Olsson, Corros. Sci., 37, 467 (1995). https://doi.org/10.1016/0010-938X(94)00148-Y
  9. Y. S. Kim and Y. S. Park, J. Corrosion Science Society of Korea, 18, 97 (1989).
  10. Y. S. Kim and Y. S. Park, J. Corrosion Science Society of Korea, 18, 89 (1989).
  11. Y. S. Kim. Metals and Materials international, 4, 183 (1998). https://doi.org/10.1007/BF03026036
  12. G. P. Halada, D. Kim, and C. R. Clayton, Corrosion, 52, 36 (1996). https://doi.org/10.5006/1.3292093
  13. C. R. Clayton and Y. C. Lu, J. Electrochem. Soc., 133, 2465 (1986). https://doi.org/10.1149/1.2108451
  14. Y. S. Kim and J. Kim, J. Corrosion Science Society of Korea, 26, 435 (1997).
  15. M. Sakashita and N. Sato, Passivity of Metals, R. P. Frankenthal and J. Kruger, eds., p. 479, The Electrochemical Society. Princeton, NJ (1978).
  16. C. Leygraf G. Hultquist. I. Olefjord, B. O. Elfstrom, V. M. Knyazheva, A. V. Plaskeyev, and Ya M. Kolotyrkin, Corros. Sci., 19, 343 (1979). https://doi.org/10.1016/0010-938X(79)90026-X
  17. J. N. Wanklyn, Corros. Sci., 21, 211 (1981). https://doi.org/10.1016/0010-938X(81)90031-7
  18. R. D. Willenbruch, C. R. Clayton, M. Overslulzen, D. Kim, and Y. Lu, Corros, Sci., 31, 179 (1990).
  19. I. Olefjord and C. R. Clayton, ISIJ International, 31, 134 (1991). https://doi.org/10.2355/isijinternational.31.134
  20. C. R. Clayton, G. P. Halada, and J. R. Kearns, Materials Science Engineering, A198, 135 (1995).
  21. Y. C. Lu, C. R. Clayton, and A. R. Brooks, Corros. Sci., 29, 863 (1989). https://doi.org/10.1016/0010-938X(89)90058-9
  22. K. Osozawa, N. Okara, Y. Fukase, and K. Yokota, Boshoku Gijutsu, 24, 1 (1975).
  23. Y. S. Kim, J. Corrosion Science Society of Korea, 21, 189 (1992).
  24. D. Kim, C. R. Clayton, and M. Oversluizen, Materials Science and Engineering. A186, 163 (1994).
  25. A. S. Vanini, J. P. Audouard, and P. Marcus, Corros. Sci., 36, 1825 (1994). https://doi.org/10.1016/0010-938X(94)90021-3
  26. K. Osozawa, Heat Treatment. 36, 206 (1996).
  27. A. R. Brooks, C. R. Clayton, K. Doss, and Y. C. Lu, J. Etectrochem. Soc., 133, 2459 (1986). https://doi.org/10.1149/1.2108450
  28. V. P. Yurkinski and E. G. Firsova, J. Applied Chemistry of USSR, 60, 1944 (1987).
  29. E. G. Rozantsev, Free Nitroxyl Radicals. Plenum Press, NY (1970).
  30. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Co., Minnesota (1992).
  31. A. Rodes, R. Gomez, J. M. Perez, J. M. Feliu, and A. Aldaz, Electrochimica Acta, 41, 729 (1996). https://doi.org/10.1016/0013-4686(95)00362-2
  32. S. Ye and H. Kita, J. Electroanal, Chem., 346, 489 (1993). https://doi.org/10.1016/0022-0728(93)85034-E
  33. A. Rodes, R. Gomez, J. M. Orts, J. M. Feliu, and A. Aldaz, J. Electroanal. Chem., 359, 315 (1993). https://doi.org/10.1016/0022-0728(93)80420-M
  34. A. Rodes, R. Gomez, J. M. Orts, J. M. Feliu, J. M. Perez, and A. Aldaz, Langmuir, 11, 3549 (1995). https://doi.org/10.1021/la00009a043
  35. R. Gomez, A. Rodes, J. M. Orts, J. M. Feliu, and J. M. Perez, Surface Science, 342, L1104 (1995). https://doi.org/10.1016/0039-6028(95)00890-X
  36. 6. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, NY (1986).
  37. D. E. Ibbotson, T. S. Wittrig, and W. H. Weinberg, Surface Science, 110, 294 (1981). https://doi.org/10.1016/0039-6028(81)90640-3
  38. S. Sugai, H. Watanabe, H. Miki, T. Kioka, and K. Kawasaki, Vacuum, 41, 90 (1990). https://doi.org/10.1016/S0042-207X(05)80135-6
  39. S. Sugai, H. Watanabe, T. Kioka, H. Miki, and K. Kawasaki. Surface Science, 259, 109 (1991). https://doi.org/10.1016/0039-6028(91)90529-2
  40. M. J. Breitschafter, E. Umbach, and D. Menzel, Surface Science, 109, 493 (1981). https://doi.org/10.1016/0039-6028(81)90502-1
  41. V. K. Agrawal and M. Trenary, Surface Science, 259. 116 (1991). https://doi.org/10.1016/0039-6028(91)90530-6
  42. T. J. Chun, in Proceedings of 5th International Conference on Nuclear Engineering, ICONE5-2030, May 26-30, Nice, France (1997).

Cited by

  1. Corrosion Inhibiting Mechanism of Nitrite Ion on the Passivation of Carbon Steel and Ductile Cast Iron for Nuclear Power Plants vol.2015, pp.None, 2010, https://doi.org/10.1155/2015/408138
  2. 다중선형회귀법을 활용한 예민화와 환경변수에 따른 AL-6XN강의 공식특성 예측 vol.19, pp.6, 2010, https://doi.org/10.14773/cst.2020.19.6.302