DOI QR코드

DOI QR Code

Corrosion Behavior of Ti-13Nb-13Zr and Ti-6Al-4V Alloys for Biomaterial Application

  • Saji, Viswanathan S. (Department of Dental Materials, School of Dentistry, Chosun University) ;
  • Jeong, Yong-Hoon (Department of Dental Materials, School of Dentistry, Chosun University) ;
  • Yu, Jin-Woo (Shingyeong University) ;
  • Choe, Han-Cheol (Department of Dental Materials, School of Dentistry, Chosun University)
  • Received : 2010.01.07
  • Accepted : 2010.02.10
  • Published : 2010.02.01

Abstract

Ti-13Nb-13Zr (TNZ) alloy has attracted considerable research attention in the last decade as a suitable substitute for the commercially used Ti-6Al-4V (TAV) alloy for orthopedic and dental implant applications. Hence, in the present work, a comparative evaluation has been performed on the electrochemical corrosion behavior of TNZ and TAV alloys in 0.9 wt.% NaCl solution. The result of the study showed that both the alloys had similar electrochemical behavior. The corrosion resistance of TAV alloy is found to be marginally superior to that of TNZ alloy.

Keywords

References

  1. H.J. Rack and J.J. Qazi, Mater. Sci. Eng., C26, 1269 (2006).
  2. K. Wang, Mater. Sci. Eng., A213, 134 (1996).
  3. V.S. Seji, Y.H. Jeong, and H.C. Choe, Corrosion Science and Technology, 8, 139 (2009).
  4. D.Y. Kim and H.S. Kwon, Corrosion Science and Technology, 2, 212 (2003).
  5. M.Y. Oh, W.G. Kim, H.C. Choe, and Y.M. Ko, Corrosion Science and Technology, 8, 89 (2009).
  6. J.A. Davidson and P. Kovacs. US Patent 4,169,597 (1992).
  7. J.A. Davidson. A.K. Mishra, P. Kovacs. and R.A. Peggie, Biomed. Mater. Eng., 4, 231 (1994).
  8. D.R. Sumner and J.O. Galante, Clin. Orthoped. Rel. Res., 274, 202 (1992).
  9. M. Geetha, U.K. Mudali, A.K. Gogia, R. Asokamani, and B. Raj, Corros. Sci., 46, 877 (2004). https://doi.org/10.1016/S0010-938X(03)00186-0
  10. S.Y. Yu and J.R. Scully, Corrosion, 53, 965 (1997). https://doi.org/10.5006/1.3290281
  11. A. Choubey, B. Basu, and R. Balasubramaniam, Trends Biomater Artif Organs. 18, 64 (2005).
  12. S.L. Assis and I. Costa, Mater Corros., 58, 329 (2007). https://doi.org/10.1002/maco.200604027
  13. S.L. Assis, S. Wolynec, and I. Costa, Mater. Corros., 59, 739 (2008). https://doi.org/10.1002/maco.200804148
  14. T.C. Niemeyer, C.R. Grandini, L.M.C. Pinto, A.C.D. Angelo, and S.G. Schneider, J. Alloy. Compd., 476, 172 (2009). https://doi.org/10.1016/j.jallcom.2008.09.026
  15. M.A. Khan, R.L. Williams, and D.F. Williams, Biomaterials, 20, 631 (1999). https://doi.org/10.1016/S0142-9612(98)00217-8
  16. M.A. Khan, R.L. Williams, and D.F. Williams, Biomaterials. 17, 2117 (1996). https://doi.org/10.1016/0142-9612(96)00029-4
  17. M.F, Lopez, A. Gutierrez, and J. A. Jimenez, Electrochim Acta. 47, 1359 (2002). https://doi.org/10.1016/S0013-4686(01)00860-X
  18. S.L. Aziz, S. Wolynec, and I. Costa, Electrochim Acta, 51, 1815 (2006). https://doi.org/10.1016/j.electacta.2005.02.121
  19. Z. Cai, T. Shafer, I. Watanabe, M.E. Nunn, and T. Okabe, Biomaterials. 24, 213 (2003). https://doi.org/10.1016/S0142-9612(02)00293-4
  20. J. Pan, D. Thierry, and C. Leygraf, Electrochim Acta, 41, 1143 (1996). https://doi.org/10.1016/0013-4686(95)00465-3