Acknowledgement
Supported by : National Research Foundation
References
- Lind P, Langsteger W, Molnar M, Gallowitsch HJ, Mikosch P, Gomez I. Epidemiology of thyroid diseases in iodine sufficiency. Thyroid 1998;8:1179-1183. https://doi.org/10.1089/thy.1998.8.1179
- Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985-1995. Cancer 1998;83:2638-2648. https://doi.org/10.1002/(SICI)1097-0142(19981215)83:12<2638::AID-CNCR31>3.0.CO;2-1
- Gimm O. Thyroid cancer. Cancer Lett 2001;163:143-156. https://doi.org/10.1016/S0304-3835(00)00697-2
- Neff RL, Farrar WB, Kloos RT, Burman KD. Anaplastic thyroid cancer. Endocrinol Metab Clin North Am 2008;37:525-538, xi. https://doi.org/10.1016/j.ecl.2008.02.003
- McIver B, Hay ID, Giuffrida DF, et al. Anaplastic thyroid carcinoma: a 50-year experience at a single institution. Surgery 2001;130:1028-1034. https://doi.org/10.1067/msy.2001.118266
- Kinder BK. Well differentiated thyroid cancer. Curr Opin Oncol 2003;15:71-77. https://doi.org/10.1097/00001622-200301000-00011
- Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 2006;6:292-306. https://doi.org/10.1038/nrc1836
- Kim KH, Kang DW, Kim SH, Seong IO, Kang DY. Mutations of the BRAF gene in papillary thyroid carcinoma in a Korean population. Yonsei Med J 2004;45:818-821. https://doi.org/10.3349/ymj.2004.45.5.818
- Slough CM, Randolph GW. Workup of well-differentiated thyroid carcinoma. Cancer Control 2006;13:99-105. https://doi.org/10.1177/107327480601300203
- Amrikachi M, Ramzy I, Rubenfeld S, Wheeler TM. Accuracy of fine-needle aspiration of thyroid. Arch Pathol Lab Med 2001;125:484-488.
- Goellner JR, Gharib H, Grant CS, Johnson DA. Fine needle aspiration cytology of the thyroid, 1980 to 1986. Acta Cytol 1987;31:587-590.
- Griffith OL, Melck A, Jones SJ, Wiseman SM. Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol 2006;24:5043-5051. https://doi.org/10.1200/JCO.2006.06.7330
- Giordano TJ, Kuick R, Thomas DG, et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene 2005;24:6646-6656. https://doi.org/10.1038/sj.onc.1208822
- Eszlinger M, Krohn K, Kukulska A, Jarzab B, Paschke R. Perspectives and limitations of microarray-based gene expression profiling of thyroid tumors. Endocr Rev 2007;28:322-338. https://doi.org/10.1210/er.2006-0047
- Hartgers FC, Vissers JL, Looman MW, et al. DC-STAMP, a novel multimembrane-spanning molecule preferentially expressed by dendritic cells. Eur J Immunol 2000;30:3585-3590. https://doi.org/10.1002/1521-4141(200012)30:12<3585::AID-IMMU3585>3.0.CO;2-Y
- Yagi M, Miyamoto T, Sawatani Y, et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 2005;202:345-351. https://doi.org/10.1084/jem.20050645
- Lee KY, Huang SM, Li S, Kim JM. Identification of differentially expressed genes in papillary thyroid cancers. Yonsei Med J 2009;50:60-67. https://doi.org/10.3349/ymj.2009.50.1.60
- Galeza-Kulik M, Zebracka J, Szpak-Ulczok S, et al. Expression of selected genes involved in transport of ions in papillary thyroid carcinoma. Endokrynol Pol 2006;57(Suppl A):26-31.
- Borgono CA, Michael IP, Diamandis EP. Human tissue kallikreins: physiologic roles and applications in cancer. Mol Cancer Res 2004;2:257-280.
- Paliouras M, Borgono C, Diamandis EP. Human tissue kallikreins: the cancer biomarker family. Cancer Lett 2007;249:61-79. https://doi.org/10.1016/j.canlet.2006.12.018
- Talieri M, Mathioudaki K, Prezas P, et al. Clinical significance of kallikrein-related peptidase 7 (KLK7) in colorectal cancer. Thromb Haemost 2009;101:741-747.
- Arden KC. Multiple roles of FOXO transcription factors in mammalian cells point to multiple roles in cancer. Exp Gerontol 2006;41:709-717. https://doi.org/10.1016/j.exger.2006.05.015
- Reagan-Shaw S, Ahmad N. The role of Forkhead-box Class O (FoxO) transcription factors in cancer: a target for the management of cancer. Toxicol Appl Pharmacol 2007;224:360-368. https://doi.org/10.1016/j.taap.2006.12.003
- Karger S, Weidinger C, Krause K, et al. FOXO3a: a novel player in thyroid carcinogenesis? Endocr Relat Cancer 2009;16:189-199.
-
Akagi T, Luong QT, Gui D, et al. Induction of sodium iodide symporter gene and molecular characterisation of
$HNF_3$ $beta/FoxA_2$ , TTF-1 and C/EBP beta in thyroid carcinoma cells. Br J Cancer 2008;99:781-788. https://doi.org/10.1038/sj.bjc.6604544
Cited by
- Increased T-Allele Frequency of 677 C>T Polymorphism in the Methylenetetrahydrofolate Reductase Gene in Differentiated Thyroid Carcinoma vol.16, pp.7, 2010, https://doi.org/10.1089/gtmb.2011.0347
- Gene expression profiling of papillary thyroid carcinomas in Korean patients by oligonucleotide microarrays vol.82, pp.5, 2010, https://doi.org/10.4174/jkss.2012.82.5.271
- AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress vol.485, pp.7400, 2010, https://doi.org/10.1038/nature11066
- The Divergence, Actions, Roles, and Relatives of Sodium-Coupled Bicarbonate Transporters vol.93, pp.2, 2010, https://doi.org/10.1152/physrev.00023.2012
- Knockdown of the Sodium-Dependent Phosphate Co-Transporter 2b (NPT2b) Suppresses Lung Tumorigenesis vol.8, pp.10, 2010, https://doi.org/10.1371/journal.pone.0077121
- RNA Sequencing Identifies Multiple Fusion Transcripts, Differentially Expressed Genes, and Reduced Expression of Immune Function Genes in BRAF (V600E) Mutant vs BRAF Wild-Type Papillary Thyroid Carcin vol.99, pp.2, 2010, https://doi.org/10.1210/jc.2013-2792
- Regulation and roles of bicarbonate transporters in cancer vol.5, pp.None, 2014, https://doi.org/10.3389/fphys.2014.00130
- Effect of BRAF mutational status on expression profiles in conventional papillary thyroid carcinomas vol.16, pp.suppl1, 2015, https://doi.org/10.1186/1471-2164-16-s1-s6
- Comparison of microarray expression profiles between follicular variant of papillary thyroid carcinomas and follicular adenomas of the thyroid vol.16, pp.suppl1, 2010, https://doi.org/10.1186/1471-2164-16-s1-s7
- Biological effects of inorganic phosphate: potential signal of toxicity vol.40, pp.1, 2015, https://doi.org/10.2131/jts.40.55
- Microarray technology to investigate genes associated with papillary thyroid carcinoma vol.11, pp.5, 2010, https://doi.org/10.3892/mmr.2015.3180
- Gene expression profiling in undifferentiated thyroid carcinoma induced by high-dose radiation vol.57, pp.3, 2016, https://doi.org/10.1093/jrr/rrw002
- A robust biomarker of differential correlations improves the diagnosis of cytologically indeterminate thyroid cancers vol.37, pp.5, 2016, https://doi.org/10.3892/ijmm.2016.2534
- Anoctamin5 regulates cell migration and invasion in thyroid cancer vol.51, pp.4, 2017, https://doi.org/10.3892/ijo.2017.4113
- Transcriptomic comparison of primary bovine horn core carcinoma culture and parental tissue at early stage vol.10, pp.1, 2010, https://doi.org/10.14202/vetworld.2017.38-55
- Aberrant expression of kallikrein‐related peptidase 7 is correlated with human melanoma aggressiveness by stimulating cell migration and invasion vol.11, pp.10, 2010, https://doi.org/10.1002/1878-0261.12103
- Kallikreins Stepwise Scoring Reveals Three Subtypes of Papillary Thyroid Cancer with Prognostic Implications vol.28, pp.5, 2010, https://doi.org/10.1089/thy.2017.0501
- Identification of Key Pathways and Genes in Anaplastic Thyroid Carcinoma via Integrated Bioinformatics Analysis vol.24, pp.None, 2018, https://doi.org/10.12659/msm.910088
- Identification of potential functional genes in papillary thyroid cancer by co-expression network analysis vol.16, pp.4, 2010, https://doi.org/10.3892/ol.2018.9306
- Diagnostic and prognostic biomarker potential of kallikrein family genes in different cancer types vol.9, pp.25, 2010, https://doi.org/10.18632/oncotarget.24947
- Identification and bioinformatics analysis of overlapping differentially expressed genes in depression, papillary thyroid cancer and uterine fibroids vol.15, pp.6, 2010, https://doi.org/10.3892/etm.2018.6023
- Long noncoding RNA NEAT1 regulate papillary thyroid cancer progression by modulating miR‐129‐5p/KLK7 expression vol.233, pp.10, 2018, https://doi.org/10.1002/jcp.26425
- Role of differentially expressed genes and long non‐coding RNAs in papillary thyroid carcinoma diagnosis, progression, and prognosis vol.119, pp.10, 2010, https://doi.org/10.1002/jcb.26836
- Papillary Thyroid Cancer: Genetic Alterations and Molecular Biomarker Investigations vol.16, pp.3, 2019, https://doi.org/10.7150/ijms.29935
- Network Analyses of Integrated Differentially Expressed Genes in Papillary Thyroid Carcinoma to Identify Characteristic Genes vol.10, pp.1, 2019, https://doi.org/10.3390/genes10010045
- Gene expression profiling identifies potential molecular markers of papillary thyroid carcinoma vol.24, pp.1, 2019, https://doi.org/10.3233/cbm-181758
- LncRNA FOXD2‐AS1 accelerates the papillary thyroid cancer progression through regulating the miR‐485‐5p/KLK7 axis vol.120, pp.5, 2010, https://doi.org/10.1002/jcb.28072
- Gene Expression Patterns Unveil New Insights in Papillary Thyroid Cancer vol.55, pp.8, 2019, https://doi.org/10.3390/medicina55080500
- MiR-4500 Regulates PLXNC1 and Inhibits Papillary Thyroid Cancer Progression vol.10, pp.4, 2010, https://doi.org/10.1007/s12672-019-00366-1
- CircHACE1 functions as a competitive endogenous RNA to curb differentiated thyroid cancer progression by upregulating Tfcp2L1 through adsorbing miR-346 vol.68, pp.8, 2010, https://doi.org/10.1507/endocrj.ej20-0806
- Modulating phosphate consumption, a novel therapeutic approach for the control of cancer cell proliferation and tumorigenesis vol.183, pp.None, 2021, https://doi.org/10.1016/j.bcp.2020.114305
- Evaluation of the Prognostic Value of Solute Carrier Family 34 Member 2 “SLC34A2” in Papillary Thyroid Carcinoma: An Immunohistochemical Study vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/3198555
- Interference with KCNJ2 inhibits proliferation, migration and EMT progression of apillary thyroid carcinoma cells by upregulating GNG2 expression vol.24, pp.3, 2021, https://doi.org/10.3892/mmr.2021.12261
- Heavy Metals in the Environment and Thyroid Cancer vol.13, pp.16, 2010, https://doi.org/10.3390/cancers13164052
- Systems biomarkers for papillary thyroid cancer prognosis and treatment through multi-omics networks vol.715, pp.None, 2022, https://doi.org/10.1016/j.abb.2021.109085
- Low expression of TFF3 in papillary thyroid carcinoma may correlate with poor prognosis but high immune cell infiltration vol.18, pp.3, 2010, https://doi.org/10.2217/fon-2020-1183