DOI QR코드

DOI QR Code

Induction of Macrophage Migration Inhibitory Factor in ConA-Stimulated Rheumatoid Arthritis Synovial Fibroblasts through the P38 MAP Kinase-Dependent Signaling Pathway

  • Kim, Hae-Rim (Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine) ;
  • Park, Mi-Kyung (Rheumatism Research Center, Catholic Institute of Medical Sciences, The Catholic University of Korea) ;
  • Cho, Mi-La (Rheumatism Research Center, Catholic Institute of Medical Sciences, The Catholic University of Korea) ;
  • Kim, Kyoung-Woon (Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine) ;
  • Oh, Hye-Joa (Rheumatism Research Center, Catholic Institute of Medical Sciences, The Catholic University of Korea) ;
  • Park, Jin-Sil (Rheumatism Research Center, Catholic Institute of Medical Sciences, The Catholic University of Korea) ;
  • Heo, Yang-Mi (Rheumatism Research Center, Catholic Institute of Medical Sciences, The Catholic University of Korea) ;
  • Lee, Sang-Heon (Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine) ;
  • Kim, Ho-Youn (Rheumatism Research Center, Catholic Institute of Medical Sciences, The Catholic University of Korea) ;
  • Park, Sung-Hwan (Rheumatism Research Center, Catholic Institute of Medical Sciences, The Catholic University of Korea)
  • Received : 2010.01.09
  • Accepted : 2010.05.24
  • Published : 2010.09.01

Abstract

Background/Aims: This study was undertaken to identify the intracellular signaling pathway involved in induction of macrophage migration inhibitory factor (MIF) in human rheumatoid arthritis (RA) synovial fibroblasts. Methods: Human RA synovial fibroblasts were treated with concanavalin A (ConA), various cytokines, and inhibitors of signal transduction molecules. The production of MIF by synovial fibroblasts was measured in culture supernatants by ELISA. The expression of MIF mRNA was determined using reverse transcriptase polymerase chain reaction (RT-PCR) and real-time PCR. Phosphorylation of p38 mitogen-activated protein (MAP) kinase in synovial fibroblasts was confirmed using Western blotting. The expression of MIF and p38 MAP kinase in RA synovium was determined using dual immunohistochemistry. Results: The production of MIF by RA synovial fibroblasts increased in a dose-dependent manner after ConA stimulation. MIF was also induced by interferon-${\gamma}$, CD40 ligand, interleukin-15, interleukin-$1{\beta}$, tumor necrosis factor-${\alpha}$, and transforming growth factor-${\beta}$. The production of MIF by RA synovial fibroblasts was significantly reduced after inhibition of p38 MAP kinase. The expression of MIF and p38 MAP kinase was upregulated in the RA synovium compared with the osteoarthritis synovium. Conclusions: These results suggest that MIF production was induced through a p38 MAP-kinase-dependent pathway in RA synovial fibroblasts.

Keywords

References

  1. Brennan F, Beech J. Update on cytokines in rheumatoid arthritis. Curr Opin Rheumatol 2007;19:296-301. https://doi.org/10.1097/BOR.0b013e32805e87f1
  2. Scheinecker C, Redlich K, Smolen JS. Cytokines as therapeutic targets: advances and limitations. Immunity 2008;28:440-444. https://doi.org/10.1016/j.immuni.2008.03.005
  3. Gunther GR, Wang JL, Yahara I, Cunningham BA, Edelman GM. Concanavalin A derivatives with altered biological activities. Proc Natl Acad Sci U S A 1973;70:1012-1016. https://doi.org/10.1073/pnas.70.4.1012
  4. Feng GS. Shp2-mediated molecular signaling in control of embryonic stem cell self-renewal and differentiation. Cell Res 2007;17:37-41. https://doi.org/10.1038/sj.cr.7310140
  5. Hurum S, Sodek J, Aubin JE. Synthesis of collagen, collagenase and collagenase inhibitors by cloned human gingival fibroblasts and the effect of concanavalin A. Biochem Biophys Res Commun 1982;107:357-366. https://doi.org/10.1016/0006-291X(82)91712-0
  6. Overall CM, Sodek J. Concanavalin A produces a matrixdegradative phenotype in human fibroblasts. Induction and endogenous activation of collagenase, 72-kDa gelatinase, and Pump-1 is accompanied by the suppression of the tissue inhibitor of matrix metalloproteinases. J Biol Chem 1990;265:21141-21151.
  7. Leech M, Metz C, Hall P, et al. Macrophage migration inhibitory factor in rheumatoid arthritis: evidence of proinflammatory function and regulation by glucocorticoids. Arthritis Rheum 1999;42:1601-1608. https://doi.org/10.1002/1529-0131(199908)42:8<1601::AID-ANR6>3.0.CO;2-B
  8. Morand EF, Bucala R, Leech M. Macrophage migration inhibitory factor: an emerging therapeutic target in rheumatoid arthritis. Arthritis Rheum 2003;48:291-299. https://doi.org/10.1002/art.10728
  9. Mitchell RA, Metz CN, Peng T, Bucala R. Sustained mitogenactivated protein kinase (MAPK) and cytoplasmic phospholipase A2 activation by macrophage migration inhibitory factor (MIF). Regulatory role in cell proliferation and glucocorticoid action. J Biol Chem 1999;274:18100-18106. https://doi.org/10.1074/jbc.274.25.18100
  10. Onodera S, Kaneda K, Mizue Y, Koyama Y, Fujinaga M, Nishihira J. Macrophage migration inhibitory factor up-regulates expression of matrix metalloproteinases in synovial fibroblasts of rheumatoid arthritis. J Biol Chem 2000;275:444-450. https://doi.org/10.1074/jbc.275.1.444
  11. Onodera S, Nishihira J, Iwabuchi K, et al. Macrophage migration inhibitory factor up-regulates matrix metalloproteinase-9 and -13 in rat osteoblasts. Relevance to intracellular signaling pathways. J Biol Chem 2002;277:7865-7874. https://doi.org/10.1074/jbc.M106020200
  12. Leech M, Lacey D, Xue JR, et al. Regulation of p53 by macrophage migration inhibitory factor in inflammatory arthritis. Arthritis Rheum 2003;48:1881-1889. https://doi.org/10.1002/art.11165
  13. Mitchell RA, Liao H, Chesney J, et al. Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: regulatory role in the innate immune response. Proc Natl Acad Sci U S A 2002;99:345-350. https://doi.org/10.1073/pnas.012511599
  14. Kim HR, Park MK, Cho ML, et al. Macrophage migration inhibitory factor upregulates angiogenic factors and correlates with clinical measures in rheumatoid arthritis. J Rheumatol 2007;34:927-936.
  15. Metz C, Bucala R, Smith MD. Macrophage migration inhibitory factor in rheumatoid arthritis: clinical correlations. Rheumatology (Oxford) 2002;41:558-562. https://doi.org/10.1093/rheumatology/41.5.558
  16. Lacey D, Sampey A, Mitchell R, et al. Control of fibroblast-like synoviocyte proliferation by macrophage migration inhibitory factor. Arthritis Rheum 2003;48:103-109. https://doi.org/10.1002/art.10733
  17. Kleemann R, Hausser A, Geiger G, et al. Intracellular action of the cytokine MIF to modulate AP-1 activity and the cell cycle through Jab1. Nature 2000;408:211-216. https://doi.org/10.1038/35041591
  18. Santos LL, Lacey D, Yang Y, Leech M, Morand EF. Activation of synovial cell p38 MAP kinase by macrophage migration inhibitory factor. J Rheumatol 2004;31:1038-1043.
  19. Kumagi T, Akbar F, Horiike N, Onji M. Increased serum levels of macrophage migration inhibitory factor in alcoholic liver diseases and their expression in liver tissues. Clin Biochem 2001;34:189-193. https://doi.org/10.1016/S0009-9120(01)00214-4
  20. Bloom BR, Bennett B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science 1966;153:80-82. https://doi.org/10.1126/science.153.3731.80
  21. David JR. Delayed hypersensitivity in vitro: its mediation by cellfree substances formed by lymphoid cell-antigen interaction. Proc Natl Acad Sci U S A 1966;56:72-77. https://doi.org/10.1073/pnas.56.1.72
  22. Bernhagen J, Calandra T, Mitchell RA, et al. MIF is a pituitaryderived cytokine that potentiates lethal endotoxaemia. Nature 1993;365:756-759. https://doi.org/10.1038/365756a0
  23. Calandra T, Spiegel LA, Metz CN, Bucala R. Macrophage migration inhibitory factor is a critical mediator of the activation of immune cells by exotoxins of Gram-positive bacteria. Proc Natl Acad Sci U S A 1998;95:11383-11388. https://doi.org/10.1073/pnas.95.19.11383
  24. Lue H, Kleemann R, Calandra T, Roger T, Bernhagen J. Macrophage migration inhibitory factor (MIF): mechanisms of action and role in disease. Microbes Infect 2002;4:449-460. https://doi.org/10.1016/S1286-4579(02)01560-5
  25. Mikulowska A, Metz CN, Bucala R, Holmdahl R. Macrophage migration inhibitory factor is involved in the pathogenesis of collagen type II-induced arthritis in mice. J Immunol 1997;158: 5514-17.
  26. Leech M, Metz C, Santos L, et al. Involvement of macrophage migration inhibitory factor in the evolution of rat adjuvant arthritis. Arthritis Rheum 1998;41:910-917. https://doi.org/10.1002/1529-0131(199805)41:5<910::AID-ART19>3.0.CO;2-E
  27. Bernhagen J, Bacher M, Calandra T, et al. An essential role for macrophage migration inhibitory factor in the tuberculin delayedtype hypersensitivity reaction. J Exp Med 1996;183:277-282. https://doi.org/10.1084/jem.183.1.277
  28. Lan HY, Bacher M, Yang N, et al. The pathogenic role of macrophage migration inhibitory factor in immunologically induced kidney disease in the rat. J Exp Med 1997;185:1455-1465. https://doi.org/10.1084/jem.185.8.1455
  29. Lan HY, Mu W, Yang N, et al. De Novo renal expression of macrophage migration inhibitory factor during the development of rat crescentic glomerulonephritis. Am J Pathol 1996;149:1119-1127.
  30. Lan HY, Yang N, Metz C, et al. TNF-alpha up-regulates renal MIF expression in rat crescentic glomerulonephritis. Mol Med 1997;3:136-144.
  31. Nishihira J, Ishibashi T, Fukushima T, Sun B, Sato Y, Todo S. Macrophage migration inhibitory factor (MIF): Its potential role in tumor growth and tumor-associated angiogenesis. Ann N Y Acad Sci 2003;995:171-182. https://doi.org/10.1111/j.1749-6632.2003.tb03220.x
  32. Hudson JD, Shoaibi MA, Maestro R, et al. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med 1999; 190:1375-1382. https://doi.org/10.1084/jem.190.10.1375
  33. Chesney J, Metz C, Bacher M, Peng T, Meinhardt A, Bucala R. An essential role for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth of a murine lymphoma. Mol Med 1999;5:181-191.
  34. Ogawa H, Nishihira J, Sato Y, et al. An antibody for macrophage migration inhibitory factor suppresses tumour growth and inhibits tumour-associated angiogenesis. Cytokine 2000;12:309-314. https://doi.org/10.1006/cyto.1999.0562
  35. Calandra T, Bernhagen J, Metz CN, et al. MIF as a glucocorticoidinduced modulator of cytokine production. Nature 1995;377:68-71. https://doi.org/10.1038/377068a0
  36. Onodera S, Tanji H, Suzuki K, et al. High expression of macrophage migration inhibitory factor in the synovial tissues of rheumatoid joints. Cytokine 1999;11:163-167. https://doi.org/10.1006/cyto.1998.0402
  37. Leng L, Metz CN, Fang Y, et al. MIF signal transduction initiated by binding to CD74. J Exp Med 2003;197:1467-1476. https://doi.org/10.1084/jem.20030286
  38. Schett G, Tohidast-Akrad M, Smolen JS, et al. Activation, differential localization, and regulation of the stress-activated protein kinases, extracellular signal-regulated kinase, c-JUN N-terminal kinase, and p38 mitogen-activated protein kinase, in synovial tissue and cells in rheumatoid arthritis. Arthritis Rheum 2000;43:2501- 2512. https://doi.org/10.1002/1529-0131(200011)43:11<2501::AID-ANR18>3.0.CO;2-K
  39. Piecyk M, Anderson P. Signal transduction in rheumatoid arthritis. Best Pract Res Clin Rheumatol 2001;15:789-803. https://doi.org/10.1053/berh.2001.0194
  40. Miyazawa K, Mori A, Miyata H, Akahane M, Ajisawa Y, Okudaira H. Regulation of interleukin-1beta-induced interleukin-6 gene expression in human fibroblast-like synoviocytes by p38 mitogenactivated protein kinase. J Biol Chem 1998;273:24832-24838. https://doi.org/10.1074/jbc.273.38.24832
  41. Suzuki M, Tetsuka T, Yoshida S, et al. The role of p38 mitogenactivated protein kinase in IL-6 and IL-8 production from the TNF-alpha- or IL-1beta-stimulated rheumatoid synovial fibroblasts. FEBS Lett 2000;465:23-27. https://doi.org/10.1016/S0014-5793(99)01717-2
  42. Kumar S, Votta BJ, Rieman DJ, Badger AM, Gowen M, Lee JC. IL-1- and TNF-induced bone resorption is mediated by p38 mitogen activated protein kinase. J Cell Physiol 2001;187:294-303. https://doi.org/10.1002/jcp.1082
  43. Pargellis C, Regan J. Inhibitors of p38 mitogen-activated protein kinase for the treatment of rheumatoid arthritis. Curr Opin Investig Drugs 2003;4:566-571.
  44. Nishikawa M, Myoui A, Tomita T, Takahi K, Nampei A, Yoshikawa H. Prevention of the onset and progression of collagen-induced arthritis in rats by the potent p38 mitogen-activated protein kinase inhibitor FR167653. Arthritis Rheum 2003;48:2670-2681. https://doi.org/10.1002/art.11227
  45. Schett G, Zwerina J, Firestein G. The p38 mitogen-activated protein kinase (MAPK) pathway in rheumatoid arthritis. Ann Rheum Dis 2008;67:909-916.
  46. Aeberli D, Yang Y, Mansell A, Santos L, Leech M, Morand EF. Endogenous macrophage migration inhibitory factor modulates glucocorticoid sensitivity in macrophages via effects on MAP kinase phosphatase-1 and p38 MAP kinase. FEBS Lett 2006; 580:974-981. https://doi.org/10.1016/j.febslet.2006.01.027

Cited by

  1. Macrophage migration inhibitory factor enhances osteoclastogenesis through upregulation of RANKL expression from fibroblast-like synoviocytes in patients with rheumatoid arthritis vol.13, pp.2, 2011, https://doi.org/10.1186/ar3279
  2. Omega-3 Polyunsaturated Fatty Acids and the Treatment of Rheumatoid Arthritis: A Meta-analysis vol.43, pp.5, 2010, https://doi.org/10.1016/j.arcmed.2012.06.011
  3. Association between vitamin D intake and the risk of rheumatoid arthritis: a meta-analysis vol.31, pp.12, 2010, https://doi.org/10.1007/s10067-012-2080-7
  4. Associations between interleukin-23 receptor polymorphisms and susceptibility to rheumatoid arthritis: a meta-analysis vol.39, pp.12, 2012, https://doi.org/10.1007/s11033-012-1955-7
  5. Associations between the FAS −670 A/G and −1,377 G/A polymorphisms and susceptibility to autoimmune rheumatic diseases: a meta-analysis vol.39, pp.12, 2010, https://doi.org/10.1007/s11033-012-1957-5
  6. The glutathione S-transferase M1 and P1 polymorphisms and rheumatoid arthritis: a meta-analysis vol.39, pp.12, 2010, https://doi.org/10.1007/s11033-012-1965-5
  7. Genome-Wide Pathway Analysis in Major Depressive Disorder vol.51, pp.2, 2013, https://doi.org/10.1007/s12031-013-0047-z
  8. Associations between interferon regulatory factor 5 polymorphisms and rheumatoid arthritis: a meta-analysis vol.40, pp.2, 2010, https://doi.org/10.1007/s11033-012-2233-4
  9. Genome-wide pathway analysis of a genome-wide association study on multiple sclerosis vol.40, pp.3, 2010, https://doi.org/10.1007/s11033-012-2341-1
  10. Pathway analysis of genome-wide association studies for Parkinson’s disease vol.40, pp.3, 2010, https://doi.org/10.1007/s11033-012-2346-9
  11. Association between the chemokine receptor 5 delta32 polymorphism and rheumatoid arthritis: a meta-analysis vol.23, pp.2, 2010, https://doi.org/10.3109/s10165-012-0665-2
  12. The PTPN22 C1858T polymorphism and rheumatoid arthritis: a meta-analysis vol.33, pp.8, 2010, https://doi.org/10.1007/s00296-013-2679-2
  13. Association between functional Fc receptor-like 3 (FCRL3) -169 C/T polymorphism and susceptibility to seropositive rheumatoid arthritis in Asians: A meta-analysis vol.74, pp.9, 2010, https://doi.org/10.1016/j.humimm.2013.05.018
  14. The p38 Mitogen-Activated Protein Kinase Pathway in Rheumatoid Arthritis vol.3, pp.1, 2010, https://doi.org/10.12677/pi.2014.31003
  15. Associations between TRAF1-C5 Gene Polymorphisms and Rheumatoid Arthritis: A Meta-Analysis vol.43, pp.2, 2014, https://doi.org/10.3109/08820139.2013.837917
  16. Gene–environmental interaction between smoking and shared epitope on the development of anti‐cyclic citrullinated peptide antibodies in rheumatoid arthritis: a meta‐analysis vol.17, pp.5, 2014, https://doi.org/10.1111/1756-185x.12307
  17. Chronic Macrophage Migration Inhibitory Factor Exposure Induces Mesenchymal Epithelial Transition and Promotes Gastric and Colon Cancers vol.9, pp.6, 2010, https://doi.org/10.1371/journal.pone.0098656
  18. Genome-wide pathway analysis of a genome-wide association study on Alzheimer’s disease vol.36, pp.1, 2010, https://doi.org/10.1007/s10072-014-1885-3
  19. Association Study of Matrix Metalloproteinases Gene Polymorphisms with Susceptibility to Rheumatoid Arthritis: A Meta-Analysis. vol.44, pp.7, 2010, https://doi.org/10.3109/08820139.2015.1056346
  20. Macrophage migration inhibitory factor: a potential therapeutic target for rheumatoid arthritis vol.31, pp.4, 2016, https://doi.org/10.3904/kjim.2016.098
  21. Meta-analysis revealsPTPN221858C/T polymorphism confers susceptibility to rheumatoid arthritis in Caucasian but not in Asian population vol.49, pp.3, 2016, https://doi.org/10.3109/08916934.2015.1134514