References
- Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature 438:967-974, 2005 https://doi.org/10.1038/nature04483
- Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727-739, 2002 https://doi.org/10.1038/nrc905
- Carmeliet P. Angiogenesis in health and disease. Nat Med 9:653-660, 2003 https://doi.org/10.1038/nm0603-653
- Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 407:249-257, 2000 https://doi.org/10.1038/35025220
- Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, Ashare AB, Lathi K, Isner JM. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98:2800-2804, 1998 https://doi.org/10.1161/01.CIR.98.25.2800
- Rosengart TK, Lee LY, Patel SR, Sanborn TA, Parikh M, Bergman GW, Hachamovitch R, Szulc M, Kligfield PD, Okin PM, Hahn RT, Devereux RB, Post MR, Hackett NR, Foster T, Grasso TM, Lesser ML, Isom OW, Crystal RG. Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100:468-474, 1999 https://doi.org/10.1161/01.CIR.100.5.468
- Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, Imaizumi T. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360:427-435, 2002 https://doi.org/10.1016/S0140-6736(02)09670-8
- Menasche P, Hagege AA, Scorsin M, Pouzet B, Desnos M, Duboc D, Schwartz K, Vilquin JT, Marolleau JP. Myoblast transplantation for heart failure. Lancet 357:279-280, 2001 https://doi.org/10.1016/S0140-6736(00)03617-5
- Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7:452-464, 2005 https://doi.org/10.1215/S1152851705000232
- Folkman J, Klagsbrun M. Angiogenic factors. Science 235:442-447, 1987 https://doi.org/10.1126/science.2432664
- Beck L Jr, D'Amore PA. Vascular development: cellular and molecular regulation. FASEB J 11:365-373, 1997 https://doi.org/10.1096/fasebj.11.5.9141503
- Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389-395, 2000 https://doi.org/10.1038/74651
- Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964-967, 1997 https://doi.org/10.1126/science.275.5302.964
- Hirschi K, Goodell M. Common origins of blood and blood vessels in adults? Differentiation 68:186-192, 2001 https://doi.org/10.1046/j.1432-0436.2001.680406.x
- Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, Naito M, Nakao K, Nishikawa S. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408:92-96, 2000 https://doi.org/10.1038/35040568
- Gariano RF, Gardner TW. Retinal angiogenesis in development and disease. Nature 438:960-966, 2005 https://doi.org/10.1038/nature04482
- Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109:693-705, 2002 https://doi.org/10.1016/S0092-8674(02)00757-2
- Engelhardt B. Development of the blood-brain barrier. Cell Tissue Res 314:119-129, 2003 https://doi.org/10.1007/s00441-003-0751-z
- Rieckmann P, Engelhardt B. Building up the blood-brain barrier. Nat Med 9:828-829, 2003 https://doi.org/10.1038/nm0703-828
- Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res 97:512-523, 2005 https://doi.org/10.1161/01.RES.0000182903.16652.d7
- Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163-1177, 2003 https://doi.org/10.1083/jcb.200302047
- Del Toro R, Prahst C, Mathivet T, Siegfried G, Kaminker JS, Larrivee B, Breant C, Duarte A, Takakura N, Fukamizu A, Penninger J, Eichmann A. Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116:4025-4033, 2010 https://doi.org/10.1182/blood-2010-02-270819
- Benelli R, Barbero A, Ferrini S, Scapini P, Cassatella M, Bussolino F, Tacchetti C, Noonan DM, Albini A. Human immunodeficiency virus transactivator protein (Tat) stimulates chemotaxis, calcium mobilization, and activation of human polymorphonuclear leukocytes: implications for Tat-mediated pathogenesis. J Infect Dis 182:1643-1651, 2000 https://doi.org/10.1086/317597
- Nicosia RF, Villaschi S. Rat aortic smooth muscle cells become pericytes during angiogenesis in vitro. Lab Invest 73:658-666, 1995
- Noonan DM, De Lerma Barbaro A, Vannini N, Mortara L, Albini A. Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer Metastasis Rev 27:31-40, 2008 https://doi.org/10.1007/s10555-007-9108-5
- Minamino T, Toko H, Tateno K, Nagai T, Komuro I. Peripheral-blood or bone-marrow mononuclear cells for therapeutic angiogenesis? Lancet 360:2083-2084, 2002 https://doi.org/10.1016/S0140-6736(02)11976-3
- Rajantie I, Ilmonen M, Alminaite A, Ozerdem U, Alitalo K, Salven P. Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104:2084-2086, 2004 https://doi.org/10.1182/blood-2004-01-0336
- Tepper OM, Capla JM, Galiano RD, Ceradini DJ, Callaghan MJ, Kleinman ME, Gurtner GC. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood 105:1068-1077, 2005
- Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409-421, 2004 https://doi.org/10.1016/j.ccr.2004.08.031
- Melani C, Chiodoni C, Forni G, Colombo MP. Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102:2138-2145, 2003 https://doi.org/10.1182/blood-2003-01-0190
- Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16:53-65, 2006
- Kim JA, March K, Chae HD, Johnstone B, Park SJ, Cook T, Merfeld-Clauss S, Broxmeyer HE. Muscle-derived Gr1 (dim) CD11b (+) cells enhance neovascularization in an ischemic hind limb mouse model. Blood 116:1623-1626, 2010 https://doi.org/10.1182/blood-2009-08-237040