Effects of glucosamine on $Ca^{2+}$ signaling and $K^+$ channel currents in T lymphocytes

T 림프구 칼슘신호와 포타슘 이온 전류에 대한 글루코사민의 효과

  • Suh, Eun-Young (Department of Physiology, Seoul National University College of Medicine) ;
  • Pang, Bo (Department of Physiology, Seoul National University College of Medicine) ;
  • Kim, Sung-Joon (Department of Physiology, Seoul National University College of Medicine) ;
  • Kim, Woo-Kyung (Department of Internal Medicine, Graduate School of Medicine, Dongguk University)
  • 서은영 (서울대학교 의과대학 생리학교실) ;
  • 방발 (서울대학교 의과대학 생리학교실) ;
  • 김성준 (서울대학교 의과대학 생리학교실) ;
  • 김우경 (동국대학교 일반대학원 내과학교실)
  • Received : 2009.11.10
  • Accepted : 2010.07.16
  • Published : 2010.11.01

Abstract

Background/Aims: Glucosamine is widely taken as a functional food, and some studies reported its anti-inflammatory effects. $K^+$ channels and intracellular signal play important roles in the activation of immune cells such as T lymphocytes. Therefore we aimed to examine the effects of glucosamine on the cell physiological parameters. Methods: In Jurkat-T lymphocytes, intracellular [$Ca^{2+}$] ($[Ca^{2+}]_i$) was measured using fura-2 fluorimetry, and voltage-gated $K^+$ current ($I_{Kv}$) was measured using whole-cell clamp technique. $Ca^{2+}$-activated $K^+$ current ($I_{Kca}$) was measured in HEK293 cells over expressing SK4 using inside-out patch clamp technique. Results: An acute application of glucosamine (0.5 mM) affected neither the increase in $[Ca^{2+}]_i$ induced by CD3 stimulation (anti-CD3 Ab, 5 ${\mu}g$/mL) nor the $I_{Kv}$ in Jurkat-T cells. A chronic stimulation of with anti-CD3 Ab (5 ${\mu}g$/mL, 24~36 hr) largely increased the amplitude of $I_{Kv}$. However, the combined treatment with glucosamine (0.1 mM) did not block the increase of $I_{Kv}$. The $I_{Kca}$ in SK4-overexpressing cells was slightly decreased by glucosamine (0.5 mM). Conclusions: While glucosamine had a minor inhibitory effect on SK4 $K^+$ channels, the anti-inflammatory effects of glucosamine could not be explained by the effects on the $Ca^{2+}$ signaling in T lymphocytes.

목적: 기능성식품 등의 소재로 널리 섭취되는 글루코사민은 항염증작용도 있음이 보고되면서 그 약리기전에 대하여 새롭게 주목받고 있다. T림프구와 같은 면역세포들에서 세포내 칼슘농도($[Ca^{2+}]_i$)의 증가 및 포타슘이온통로의 활성화는 면역세포활성화에 중요함이 잘 알려져 있다. 본 연구는 림프구 칼슘농도와 포타슘이온전류에 대한 글루코사민의 작용여부를 밝히기 위하여 수행되었다. 방법: Jurkat-T 림프구에서 $[Ca^{2+}]_i$와 막전압의존성 포타슘전류($I_{Kv}$)는 각각 fura-2 형광분석법과 전세포팻취클램프 방법으로 측정하였다. 칼슘의존성 포타슘전류($I_{Kca}$)를 측정하기 위하여, SK4 과발현 HEK-293 세포주에서 inside-out 팻취클 램프를 수행하였다. 결과: 항CD3항체에 의한 T세포 수용체 자극은 $[Ca^{2+}]_i$의 뚜렷한 증가를 유발하나, 글루코사민(0.5 mM)의 급성투여는 이에 대하여 별다른 영향을 주지 않았다. 또한 $I_{Kv}$도 변하지 않았다. 장시간 T세포 수용체 자극(24~36 h)은 $I_{Kv}$를 두 배 이상 증가시켰으며, 글루코사민을 병행처치하여도 차단되지 않았다. $I_{Kca}$는 글루코사민(0.5 mM) 처치에 의하여 약 85%까지 감소하였다. 결론: 이상의 결과로 볼 때 일부 연구에서 관찰된 글루코사민의 면역/염증세포 억제효과는 주로 이온통로와 칼슘신호를 매개로 할 가능성은 낮은 것으로 사료된다. 하지만 포타슘이온통로를 통한 항염증 작용의 가능성을 완전히 배제할 수는 없다.

Keywords

Acknowledgement

Supported by : GSK Korea, Seoul National University Bundang Hospital

References

  1. Wang SX, Laverty S, Dumitriu M, Plaas A, Grynpas MD. The effects of glucosamine hydrochloride on subchondral bone changes in an animal model of osteoarthritis. Arthritis Rheum 56:1537-1548, 2007 https://doi.org/10.1002/art.22574
  2. Herrero-Beaumont G, Rovarti LC, Castanda S, Alvarez-Soria MA, Largo R. The reverse glucosamine sulfate pathway: application in knee osteoarthritis. Expert Opin Pharmacother 8:215-225, 2007 https://doi.org/10.1517/14656566.8.2.215
  3. Nakamura H, Masuko K, Yudoh K, Kato T, Kamada T, Kawahara T. Effects of glucosamine administration on patients with rheumatoid arthritis. Rheumatol Int 27:213-218, 2007
  4. Jang BC, Sung SH, Park JG, Park JW, Bae JH, Shin DH, Park GY, Han SB, Suh SI. Glucosamine hydrochloride specifically inhibits COX-2 by preventing COX-2N-glycosylation and by increasing COX-2 protein turnover in a proteasome-dependent manner. J Biol Chem 282:27622-27632, 2007 https://doi.org/10.1074/jbc.M610778200
  5. Largo R, Martinez-Calatrava MJ, Sanchez-Pernaute O, Marcos ME, Moreno-Rubio J, Aparicio C, Egido J, Herrero-Beaumont G. Effect of a high dose of glucosamine on systemic and tissue inflammation in an experimental model of atherosclerosis aggravated by chronic arthritis Am J Physiol Heart Circ Physiol 297:H268-H276, 2009 https://doi.org/10.1152/ajpheart.00142.2009
  6. Largo R, Alvarez-Soria MA, Diez-Ortego I, Calvo E, Sanchez-Pernaute O, Ejido J, Herrero-Beaumont G. Glucosamine inhibits IL-1beta-induced NFkappaB activation in human osteoarthritic chondrocytes. Osteoarthritis Cartilage 11:290-298, 2003 https://doi.org/10.1016/S1063-4584(03)00028-1
  7. Monfort J, Pelletier JP, Garcia-Giralt N, Martel-Pelletier J. Biochemical basis of the effect of chondroitin sulfate on osteoarthritis articular tissues. Ann Rheum Dis 67:735-740, 2008 https://doi.org/10.1136/ard.2006.068882
  8. Jeong KC, Ahn KO, Lee BI, Lee CH, Kim SY. The mechanism of transglutaminase 2 inhibition with glucosamine: implications of a possible anti-inflammatory effect through transglutaminase inhibition. J Cancer Res Clin Oncol 136:143-150, 2010 https://doi.org/10.1007/s00432-009-0645-x
  9. Feske S. Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7:690-702, 2007 https://doi.org/10.1038/nri2152
  10. Panyi G. Biophysical and pharmacological aspects of K+ channels in T lymphocytes. Eur Biophys J 34:515-529, 2005 https://doi.org/10.1007/s00249-005-0499-3
  11. Panyi G. Vamosi G, Bacso Z, Bagdany M, Bodnar A, Varga Z, Gaspar R, Matyus L, Damjanovich S. Kv1.3 potassium channels are localized in the immunological synapse formed between cytotoxic and target cells. Proc Natl Acad Sci U S A 101:1285-1290, 2004 https://doi.org/10.1073/pnas.0307421100
  12. Xu J, Koni PA, Wang P, Li G, Kaczmarek L, Wu Y, Li Y, Flavell RA, Desir GV. The voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight. Hum Mol Genet 12:551-559, 2003 https://doi.org/10.1093/hmg/ddg049
  13. Hua J, Suguro S, Iwabuchi K, Tsutsumi-Ishii Y, Sakamoto K, Nagaoka I. Glucosamine, a naturally occurring amino monosaccharide, suppresses the ADP-mediated platelet activation in humans. Inflamm Res 53:680-688, 2004 https://doi.org/10.1007/s00011-004-1312-y
  14. Yi HA, Yi SD, Jang BC, Song DK, Shin DH, Mun KC, Kim SP, Suh SI, Bae JH. Inhibitory effects of glucosamine on lipopolysaccharide-induced activation in microglial cells. Clin Exp Pharmacol Physiol 32:1097-1103, 2005 https://doi.org/10.1111/j.1440-1681.2005.04305.x
  15. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85-100,1981 https://doi.org/10.1007/BF00656997
  16. Decoursey TE, Chandy KG, Gupta S, Cahalan MD. Mitogen induction of ion channels in murine T lymphocytes. J Gen Physiol 89:405-420, 1987 https://doi.org/10.1085/jgp.89.3.405
  17. Nicolaou SA. Neumeier L, Peng Y, Devor DC, Conforti L. The Ca(2+)-activated (K+) channel KCa3.1 compartmentalizes in the immunological synapse of human T lymphocytes. Am J Physiol Cell Physiol 292:C1431-C1439, 2007
  18. Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, LeeHealey CJ, S Andrews B, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL, Zimin P, Havel PJ, Griffey S, Knaus HG, Nepom GT, Gutman GA, Calabresi PA, Chandy KG. Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci U S A 103:17414-17419, 2006 https://doi.org/10.1073/pnas.0605136103
  19. Wulff H, Calabresi PA, Allie R, Yun S, Pennington M, Beeton C, Chandy KG. The voltage-gated Kv1.3 K(+) channel in effector memory T cells as new target for MS. J Clin Invest 2003 111:1703-1713, 2003
  20. Valverde P, Kawai T, Taubman MA. Potassium channel-blockers as therapeutic agents to interfere with bone resorption of periodontal disease. J Dent Res 84:488-499, 2005 https://doi.org/10.1177/154405910508400603
  21. Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier JM, Shakkottai V. Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr Med Chem 14:1437-1457, 2007 https://doi.org/10.2174/092986707780831186