Acknowledgement
Supported by : GSK Korea, Seoul National University Bundang Hospital
References
- Wang SX, Laverty S, Dumitriu M, Plaas A, Grynpas MD. The effects of glucosamine hydrochloride on subchondral bone changes in an animal model of osteoarthritis. Arthritis Rheum 56:1537-1548, 2007 https://doi.org/10.1002/art.22574
- Herrero-Beaumont G, Rovarti LC, Castanda S, Alvarez-Soria MA, Largo R. The reverse glucosamine sulfate pathway: application in knee osteoarthritis. Expert Opin Pharmacother 8:215-225, 2007 https://doi.org/10.1517/14656566.8.2.215
- Nakamura H, Masuko K, Yudoh K, Kato T, Kamada T, Kawahara T. Effects of glucosamine administration on patients with rheumatoid arthritis. Rheumatol Int 27:213-218, 2007
- Jang BC, Sung SH, Park JG, Park JW, Bae JH, Shin DH, Park GY, Han SB, Suh SI. Glucosamine hydrochloride specifically inhibits COX-2 by preventing COX-2N-glycosylation and by increasing COX-2 protein turnover in a proteasome-dependent manner. J Biol Chem 282:27622-27632, 2007 https://doi.org/10.1074/jbc.M610778200
- Largo R, Martinez-Calatrava MJ, Sanchez-Pernaute O, Marcos ME, Moreno-Rubio J, Aparicio C, Egido J, Herrero-Beaumont G. Effect of a high dose of glucosamine on systemic and tissue inflammation in an experimental model of atherosclerosis aggravated by chronic arthritis Am J Physiol Heart Circ Physiol 297:H268-H276, 2009 https://doi.org/10.1152/ajpheart.00142.2009
- Largo R, Alvarez-Soria MA, Diez-Ortego I, Calvo E, Sanchez-Pernaute O, Ejido J, Herrero-Beaumont G. Glucosamine inhibits IL-1beta-induced NFkappaB activation in human osteoarthritic chondrocytes. Osteoarthritis Cartilage 11:290-298, 2003 https://doi.org/10.1016/S1063-4584(03)00028-1
- Monfort J, Pelletier JP, Garcia-Giralt N, Martel-Pelletier J. Biochemical basis of the effect of chondroitin sulfate on osteoarthritis articular tissues. Ann Rheum Dis 67:735-740, 2008 https://doi.org/10.1136/ard.2006.068882
- Jeong KC, Ahn KO, Lee BI, Lee CH, Kim SY. The mechanism of transglutaminase 2 inhibition with glucosamine: implications of a possible anti-inflammatory effect through transglutaminase inhibition. J Cancer Res Clin Oncol 136:143-150, 2010 https://doi.org/10.1007/s00432-009-0645-x
- Feske S. Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7:690-702, 2007 https://doi.org/10.1038/nri2152
- Panyi G. Biophysical and pharmacological aspects of K+ channels in T lymphocytes. Eur Biophys J 34:515-529, 2005 https://doi.org/10.1007/s00249-005-0499-3
- Panyi G. Vamosi G, Bacso Z, Bagdany M, Bodnar A, Varga Z, Gaspar R, Matyus L, Damjanovich S. Kv1.3 potassium channels are localized in the immunological synapse formed between cytotoxic and target cells. Proc Natl Acad Sci U S A 101:1285-1290, 2004 https://doi.org/10.1073/pnas.0307421100
- Xu J, Koni PA, Wang P, Li G, Kaczmarek L, Wu Y, Li Y, Flavell RA, Desir GV. The voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight. Hum Mol Genet 12:551-559, 2003 https://doi.org/10.1093/hmg/ddg049
- Hua J, Suguro S, Iwabuchi K, Tsutsumi-Ishii Y, Sakamoto K, Nagaoka I. Glucosamine, a naturally occurring amino monosaccharide, suppresses the ADP-mediated platelet activation in humans. Inflamm Res 53:680-688, 2004 https://doi.org/10.1007/s00011-004-1312-y
- Yi HA, Yi SD, Jang BC, Song DK, Shin DH, Mun KC, Kim SP, Suh SI, Bae JH. Inhibitory effects of glucosamine on lipopolysaccharide-induced activation in microglial cells. Clin Exp Pharmacol Physiol 32:1097-1103, 2005 https://doi.org/10.1111/j.1440-1681.2005.04305.x
- Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85-100,1981 https://doi.org/10.1007/BF00656997
- Decoursey TE, Chandy KG, Gupta S, Cahalan MD. Mitogen induction of ion channels in murine T lymphocytes. J Gen Physiol 89:405-420, 1987 https://doi.org/10.1085/jgp.89.3.405
- Nicolaou SA. Neumeier L, Peng Y, Devor DC, Conforti L. The Ca(2+)-activated (K+) channel KCa3.1 compartmentalizes in the immunological synapse of human T lymphocytes. Am J Physiol Cell Physiol 292:C1431-C1439, 2007
- Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, LeeHealey CJ, S Andrews B, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL, Zimin P, Havel PJ, Griffey S, Knaus HG, Nepom GT, Gutman GA, Calabresi PA, Chandy KG. Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci U S A 103:17414-17419, 2006 https://doi.org/10.1073/pnas.0605136103
- Wulff H, Calabresi PA, Allie R, Yun S, Pennington M, Beeton C, Chandy KG. The voltage-gated Kv1.3 K(+) channel in effector memory T cells as new target for MS. J Clin Invest 2003 111:1703-1713, 2003
- Valverde P, Kawai T, Taubman MA. Potassium channel-blockers as therapeutic agents to interfere with bone resorption of periodontal disease. J Dent Res 84:488-499, 2005 https://doi.org/10.1177/154405910508400603
- Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier JM, Shakkottai V. Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr Med Chem 14:1437-1457, 2007 https://doi.org/10.2174/092986707780831186