DOI QR코드

DOI QR Code

Regulation of endothelial nitric oxide synthase by agmatine after transient global cerebral ischemia in rat brain

  • Mun, Chin-Hee (Department of Anatomy, Yonsei University College of Medicine) ;
  • Lee, Won-Taek (Department of Anatomy, Yonsei University College of Medicine) ;
  • Park, Kyung-Ah (Department of Anatomy, Yonsei University College of Medicine) ;
  • Lee, Jong-Eun (Department of Anatomy, Yonsei University College of Medicine)
  • 투고 : 2010.08.19
  • 심사 : 2010.09.10
  • 발행 : 2010.09.30

초록

Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) plays a protective role in cerebral ischemia by maintaining vascular permeability, whereas NO derived from neuronal and inducible NOS is neurotoxic and can participate in neuronal damage occurring in ischemia. Matrix metalloproteinases (MMPs) are up-regulated by ischemic injury and degrade the basement membrane if brain vessels to promote cell death and tissue injury. We previously reported that agmatine, synthesized from L-arginine by arginine decarboxylase (ADC) which is expressed in endothelial cells, has shown a direct increased eNOS expression and decreased MMPs expression in bEnd3 cells. But, there are few reports about the regulation of eNOS by agmatine in ischemic animal model. In the present study, we examined the expression of eNOS and MMPs by agmatine treatment after transient global ischemia in vivo. Global ischemia was induced with four vessel occlusion (4-VO) and agmatine (100 mg/kg) was administered intraperitoneally at the onset of reperfusion. The animals were euthanized at 6 and 24 hours after global ischemia and prepared for other analysis. Global ischemia led severe neuronal damage in the rat hippocampus and cerebral cortex, but agmatine treatment protected neurons from ischemic injury. Moreover, the level and expression of eNOS was increased by agmatine treatment, whereas inducible NOS (iNOS) and MMP-9 protein expressions were decreased in the brain. These results suggest that agmatine protects microvessels in the brain by activation eNOS as well as reduces extracellular matrix degradation during the early phase of ischemic insult.

키워드

과제정보

연구 과제번호 : Mid-career Researcher Program

연구 과제 주관 기관 : NRF

참고문헌

  1. Abe K, Abe Y, Saito H. (2000). Agmatine suppresses nitric oxide production in microglia. Brain Res 872: 141-148 https://doi.org/10.1016/S0006-8993(00)02517-8
  2. Asahi M, Sumii T, Fini ME, Itohara S, Lo EH. (2001a). Matrix metalloproteinase 2 gene knockout has no effect on acute brain injury after focal ischemia. Neuroreport 12: 3003-3007 https://doi.org/10.1097/00001756-200109170-00050
  3. Asahi M, Wang X, Mori T, et al. (2001b). Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci 21: 7724-7732
  4. Atochin DN, Clark J, Demchenko IT, Moskowitz MA, Huang PL. (2003). Rapid cerebral ischemic preconditioning in mice deficient in endothelial and neuronal nitric oxide synthases. Stroke 34: 1299-1303 https://doi.org/10.1161/01.STR.0000066870.70976.57
  5. Auguet M, Viossat I, Marin JG, Chabrier PE. (1995). Selective inhibition of inducible nitric oxide synthase by agmatine. Jpn J Pharmacol 69: 285-287 https://doi.org/10.1254/jjp.69.285
  6. Blantz RC, Satriano J, Gabbai F, Kelly C. (2000). Biological effects of arginine metabolites. Acta Physiol Scand 168: 21-25 https://doi.org/10.1046/j.1365-201x.2000.00646.x
  7. Cui X, Chopp M, Zacharek A, Zhang C, Roberts C, Chen J. (2009). Role of endothelial nitric oxide synthetase in arteriogenesis after stroke in mice. Neuroscience 159: 744-750 https://doi.org/10.1016/j.neuroscience.2008.12.055
  8. Feng Y, Piletz JE, Leblanc MH. (2002). Agmatine suppresses nitric oxide production and attenuates hypoxic-ischemic brain injury in neonatal rats. Pediatr Res 52: 606-611 https://doi.org/10.1203/00006450-200210000-00023
  9. Gu Z, Kaul M, Yan B, et al. (2002). S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297: 1186-1190 https://doi.org/10.1126/science.1073634
  10. Huang PL. (2004). Nitric oxide and cerebral ischemic preconditioning. Cell Calcium 36: 323-329 https://doi.org/10.1016/j.ceca.2004.02.007
  11. Iadecola C. (1997). Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20: 132-139 https://doi.org/10.1016/S0166-2236(96)10074-6
  12. Joshi MS, Ferguson TB Jr, Johnson FK, Johnson RA, Parthasarathy S, Lancaster JR Jr. (2007). Receptor-mediated activation of nitric oxide synthesis by arginine in endothelial cells. Proc Natl Acad Sci U S A 104: 9982-9987 https://doi.org/10.1073/pnas.0506824104
  13. Jung HJ, Yang MZ, Kwon KH, et al. (2010). Endogenous agmatine inhibits cerebral vascular matrix metalloproteinases expression by regulating activating transcription factor 3 and endothelial nitric oxide synthesis. Curr Neurovasc Res 7: 201-212 https://doi.org/10.2174/156720210792231804
  14. Katsuta K, Umemura K, Ueyama N, Matsuoka N. (2003). Pharmacological evidence for a correlation between hippocampal CA1 cell damage and hyperlocomotion following global cerebral ischemia in gerbils. Eur J Pharmacol 467: 103-109 https://doi.org/10.1016/S0014-2999(03)01573-5
  15. Kim DJ, Kim DI, Lee SK, et al. (2006). Protective effect of agmatine on a reperfusion model after transient cerebral ischemia: temporal evolution on perfusion MR imaging and histopathologic findings. AJNR Am J Neuroradiol 27: 780-785
  16. Kim JH, Lee YW, Kim JY, Lee WT, Park KA, Lee JE. (2008). The effect of agmatine on expression of MMP2 and MMP9 in Cerebral ischemia. Korean J Anat 41: 97-104
  17. Kim JH, Lee YW, Park KA, Lee WT, Lee JE. (2010). Agmatine attenuates brain edema through reducing the expression of aquaporin-1 after cerebral ischemia. J Cereb Blood Flow Metab 30: 943-949 https://doi.org/10.1038/jcbfm.2009.260
  18. Kim JH, Yenari MA, Giffard RG, Cho SW, Park KA, Lee JE. (2004). Agmatine reduces infarct area in a mouse model of transient focal cerebral ischemia and protects cultured neurons from ischemia-like injury. Exp Neurol 189: 122-130 https://doi.org/10.1016/j.expneurol.2004.05.029
  19. Kohno K, Higuchi T, Ohta S, Kohno K, Kumon Y, Sakaki S. (1997). Neuroprotective nitric oxide synthase inhibitor reduces intracellular calcium accumulation following transient global ischemia in the gerbil. Neurosci Lett 224: 17-20 https://doi.org/10.1016/S0304-3940(97)13459-0
  20. Lee JE, Yenari MA, Sun GH, et al. (2001). Differential neuroprotection from human heat shock protein 70 overexpression in in vitro and in vivo models of ischemia and ischemia-like conditions. Exp Neurol 170: 129-139 https://doi.org/10.1006/exnr.2000.7614
  21. Lee WT, Hong S, Yoon SH, et al. (2009). Neuroprotective effects of agmatine on oxygen-glucose deprived primary-cultured astrocytes and nuclear translocation of nuclear factor-kappa B. Brain Res 1281: 64-70 https://doi.org/10.1016/j.brainres.2009.05.046
  22. Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ. (1994). Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263: 966-969 https://doi.org/10.1126/science.7906055
  23. Lo EH, Dalkara T, Moskowitz MA. (2003). Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4: 399-415
  24. Lo EH, Wang X, Cuzner ML. (2002). Extracellular proteolysis in brain injury and inflammation: role for plasminogen activators and matrix metalloproteinases. J Neurosci Res 69: 1-9 https://doi.org/10.1002/jnr.10270
  25. Marks KA, Mallard CE, Roberts I, Williams CE, Gluckman PD, Edwards AD. (1996). Nitric oxide synthase inhibition attenuates delayed vasodilation and increases injury after cerebral ischemia in fetal sheep. Pediatr Res 40: 185-191 https://doi.org/10.1203/00006450-199608000-00002
  26. Moro MA, Cardenas A, Hurtado O, Leza JC, Lizasoain I. (2004). Role of nitric oxide after brain ischaemia. Cell Calcium 36: 265-275 https://doi.org/10.1016/j.ceca.2004.02.011
  27. Morrissey JJ, Klahr S. (1997). Agmatine activation of nitric oxide synthase in endothelial cells. Proc Assoc Am Physicians 109: 51-57
  28. Mun CH, Kim JH, Park KA, Lee WT, Baik JH, Lee JE. (2009). Agmatine attenuates nitric oxide synthesis and protects ER-structure from global cerebral ischemia in rats. Korean J Anat 42: 149-160
  29. Mun CH, Lee WT, Park KA, Lee JE. (In Press). Agmatine reduced the expressions of nitric oxide synthase and peroxynitrite formation in rat cerebral cortex after transient global cerebral ischemia. Neural Regen Res
  30. Pagenstecher A, Stalder AK, Kincaid CL, Shapiro SD, Campbell IL. (1998). Differential expression of matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase genes in the mouse central nervous system in normal and inflammatory states. Am J Pathol 152: 729-741
  31. Pannu R, Singh I. (2006). Pharmacological strategies for the regulation of inducible nitric oxide synthase: neurodegenerative versus neuroprotective mechanisms. Neurochem Int 49: 170-182 https://doi.org/10.1016/j.neuint.2006.04.010
  32. Paxinos G, Watson C. (1998). The rat brain in stereotaxic coordinates, 4th ed. New York, Academic Press
  33. Pulsinelli WA, Brierley JB. (1979). A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10: 267-272 https://doi.org/10.1161/01.STR.10.3.267
  34. Raasch W, Schafer U, Chun J, Dominiak P. (2001). Biological significance of agmatine, an endogenous ligand at imidazoline binding sites. Br J Pharmacol 133: 755-780 https://doi.org/10.1038/sj.bjp.0704153
  35. Raghavan SA, Dikshit M. (2004). Vascular regulation by the L-arginine metabolites, nitric oxide and agmatine. Pharmacol Res 49: 397-414 https://doi.org/10.1016/j.phrs.2003.10.008
  36. Rivera S, Ogier C, Jourquin J, et al. (2002). Gelatinase B and TIMP-1 are regulated in a cell- and time-dependent manner in association with neuronal death and glial reactivity after global forebrain ischemia. Eur J Neurosci 15: 19-32 https://doi.org/10.1046/j.0953-816x.2001.01838.x
  37. Rosenberg GA. (2002). Matrix metalloproteinases in neuroinflammation. Glia 39: 279-291 https://doi.org/10.1002/glia.10108
  38. Santhanam AV, Viswanathan S, Dikshit M. (2007). Activation of protein kinase B/Akt and endothelial nitric oxide synthase mediates agmatine-induced endothelium-dependent relaxation. Eur J Pharmacol 572: 189-196 https://doi.org/10.1016/j.ejphar.2007.06.031
  39. Tsirka SE, Rogove AD, Strickland S. (1996). Neuronal cell death and tPA. Nature 384: 123-124.
  40. Veltkamp R, Rajapakse N, Robins G, Puskar M, Shimizu K, Busija D. (2002). Transient focal ischemia increases endothelial nitric oxide synthase in cerebral blood vessels. Stroke 33: 2704-2710 https://doi.org/10.1161/01.STR.0000033132.85123.6A
  41. Wang X, Feuerstein GZ. (2000). Role of immune and inflammatory mediators in CNS injury. Drug News Perspect 13: 133-140 https://doi.org/10.1358/dnp.2000.13.3.657283
  42. Yang MZ, Mun CH, Choi YJ, et al. (2007). Agmatine inhibits matrix metalloproteinase-9 via endothelial nitric oxide synthase in cerebral endothelial cells. Neurol Res 29: 749-754 https://doi.org/10.1179/016164107X208103
  43. Yong VW, Krekoski CA, Forsyth PA, Bell R, Edwards DR. (1998). Matrix metalloproteinases and diseases of the CNS. Trends Neurosci 21: 75-80 https://doi.org/10.1016/S0166-2236(97)01169-7
  44. Zalewska T, Ziemka-Nałecz M, Sarnowska A, Domańska-Janik K. (2002). Involvement of MMPs in delayed neuronal death after global ischemia. Acta Neurobiol Exp (Wars) 62: 53-61

피인용 문헌

  1. Agmatine selectively improves behavioural function in aged male Sprague-Dawley rats vol.218, pp.None, 2010, https://doi.org/10.1016/j.neuroscience.2012.05.015
  2. Convergence of Ca2+ signaling pathways in adipocytes. The role of L-arginine and protein kinase G in generation of transient and periodic Ca2+ signals vol.6, pp.1, 2010, https://doi.org/10.1134/s1990747811060158
  3. Efficacy of Different Nitric Oxide-Based Strategies in Preventing Experimental Cerebral Malaria by Plasmodium berghei ANKA vol.7, pp.2, 2010, https://doi.org/10.1371/journal.pone.0032048
  4. Agmatine (decarboxylated l-arginine): Physiological role and therapeutic potential vol.133, pp.3, 2012, https://doi.org/10.1016/j.pharmthera.2011.12.005
  5. Agmatine, a metabolite of L-arginine, reverses scopolamine-induced learning and memory impairment in rats vol.102, pp.4, 2010, https://doi.org/10.1016/j.pbb.2012.07.003
  6. Agmatine ameliorates atherosclerosis progression and endothelial dysfunction in high cholesterol-fed rabbits vol.66, pp.6, 2010, https://doi.org/10.1111/jphp.12204
  7. Development of a Pseudomonas aeruginosa Agmatine Biosensor vol.4, pp.4, 2010, https://doi.org/10.3390/bios4040387
  8. Determination of agmatine using isotope dilution UPLC-tandem mass spectrometry: application to the characterization of the arginine decarboxylase pathway in Pseudomonas aeruginosa vol.407, pp.18, 2010, https://doi.org/10.1007/s00216-015-8724-0
  9. Cloning of two LIMCH1 isoforms: characterization of their distribution in rat brain and their agmatinase activity vol.145, pp.3, 2010, https://doi.org/10.1007/s00418-015-1389-0
  10. Agmatine, A Metabolite of Arginine, Improves Learning and Memory in Streptozotocin-Induced Alzheimer's Disease Model in Rats vol.26, pp.4, 2010, https://doi.org/10.5455/bcp.20161121125642
  11. The Anti-inflammatory Effects of Agmatine on Transient Focal Cerebral Ischemia in Diabetic Rats vol.28, pp.3, 2010, https://doi.org/10.1097/ana.0000000000000195
  12. Effects of agmatine on cognitive functions during vascular dementia in biological aging through eNOS and BDNF expression vol.27, pp.2, 2017, https://doi.org/10.1080/24750573.2017.1309090
  13. Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors vol.44, pp.4, 2010, https://doi.org/10.1007/s11064-018-02712-1
  14. Biochemical and pathophysiological properties of polyamines vol.52, pp.2, 2010, https://doi.org/10.1007/s00726-020-02821-8
  15. Neuroprotective effect of menaquinone-4 (MK-4) on transient global cerebral ischemia/reperfusion injury in rat vol.15, pp.3, 2020, https://doi.org/10.1371/journal.pone.0229769
  16. Crystal Structure of Escherichia coli Agmatinase: Catalytic Mechanism and Residues Relevant for Substrate Specificity vol.22, pp.9, 2010, https://doi.org/10.3390/ijms22094769
  17. Role of agmatine in the application of neural progenitor cell in central nervous system diseases: therapeutic potentials and effects vol.54, pp.2, 2010, https://doi.org/10.5115/acb.21.089
  18. An effective method for establishing animal models of azoospermia and oligospermia vol.53, pp.7, 2021, https://doi.org/10.1111/and.14095