DOI QR코드

DOI QR Code

PINK1 and Parkin to control mitochondria remodeling

  • Koh, Hyong-Jong (Department of Pharmacology, Mitochondria Hub Regulation Center (MHRC), Dong-A University College of Medicine) ;
  • Chung, Jong-Kyeong (School of Biological Sciences, Seoul National University)
  • Received : 2010.07.12
  • Accepted : 2010.08.18
  • Published : 2010.09.30

Abstract

Parkinson's disease (PD), one of the most common neurodegenerative diseases, is characterized by movement disorders and a loss of dopaminergic (DA) neurons. PD mainly occurs sporadically, but may also result from genetic mutations in several PD-linked genes. Recently, genetic studies with Drosophila mutants, parkin and PINK1, two common PD-associated genes, demonstrated that Parkin acts downstream of PINK1 in maintaining mitochondrial function and integrity. Further studies revealed that PINK1 translocates Parkin to mitochondria and regulates critical mitochondrial remodeling processes. These findings, which suggest that mitochondrial dysfunction is a prominent cause of PD pathogenesis, provide valuable insights which may aid in the development of effective treatments for PD.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 3: 1301-1306 https://doi.org/10.1038/81834
  2. Bonifati V, Rizzu P, van Baren MJ, et al. (2003). Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299: 256-259 https://doi.org/10.1126/science.1077209
  3. Cha GH, Kim S, Park J, et al. (2005). Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc Natl Acad Sci U S A 102: 10345-10350 https://doi.org/10.1073/pnas.0500346102
  4. Chan DC. (2006). Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22: 79-99 https://doi.org/10.1146/annurev.cellbio.22.010305.104638
  5. Cicchetti F, Lapointe N, Roberge-Tremblay A, et al. (2005). Systemic exposure to paraquat and maneb models early Parkinson's disease in young adult rats. Neurobiol Dis 20: 360-371 https://doi.org/10.1016/j.nbd.2005.03.018
  6. Clark IE, Dodson MW, Jiang C, et al. (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441: 1162-1166 https://doi.org/10.1038/nature04779
  7. Coulom H, Birman S. (2004). Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster. J Neurosci 24: 10993-10998 https://doi.org/10.1523/JNEUROSCI.2993-04.2004
  8. Deng H, Dodson MW, Huang H, Guo M. (2008). The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci U S A 105: 14503-14508 https://doi.org/10.1073/pnas.0803998105
  9. Exner N, Treske B, Paquet D, et al. (2007). Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci 27: 12413-12418 https://doi.org/10.1523/JNEUROSCI.0719-07.2007
  10. Geisler S, Holmstrom KM, Skujat D, et al. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12: 119-231 https://doi.org/10.1038/ncb2012
  11. Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ. (2003). Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A 100: 4078-4083 https://doi.org/10.1073/pnas.0737556100
  12. Henchcliffe C, Beal MF. (2008). Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4: 600-609
  13. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R. (2001). An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105: 891-902 https://doi.org/10.1016/S0092-8674(01)00407-X
  14. Keeney PM, Xie J, Capaldi RA, Bennett JP Jr. (2006). Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26: 5256-5264 https://doi.org/10.1523/JNEUROSCI.0984-06.2006
  15. Kim Y, Park J, Kim S, et al. (2008). PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 377: 975-980 https://doi.org/10.1016/j.bbrc.2008.10.104
  16. Kitada T, Asakawa S, Hattori N, et al. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605-608 https://doi.org/10.1038/33416
  17. Klein C, Lohmann-Hedrich K. (2007). Impact of recent genetic findings in Parkinson's disease. Curr Opin Neurol 20: 453-464 https://doi.org/10.1097/WCO.0b013e3281e6692b
  18. Lang AE, Lozano AM. (1998). Parkinson's disease. First of two parts. N Engl J Med 339: 1044-1053 https://doi.org/10.1056/NEJM199810083391506
  19. Langston JW, Ballard P, Tetrud JW, Irwin I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979-980 https://doi.org/10.1126/science.6823561
  20. Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP. (2010). Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol 189: 671-679 https://doi.org/10.1083/jcb.201001039
  21. Matsuda N, Sato S, Shiba K, et al. (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189: 211-221 https://doi.org/10.1083/jcb.200910140
  22. Narendra D, Tanaka A, Suen DF, Youle RJ. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183: 795-803 https://doi.org/10.1083/jcb.200809125
  23. Narendra DP, Jin SM, Tanaka A, et al. (2010). PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8: e1000298 https://doi.org/10.1371/journal.pbio.1000298
  24. Paisan-Ruiz C, Jain S, Evans EW, et al. (2004). Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44: 595-600 https://doi.org/10.1016/j.neuron.2004.10.023
  25. Park J, Lee G, Chung J. (2009). The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process. Biochem Biophys Res Commun 378: 518-523 https://doi.org/10.1016/j.bbrc.2008.11.086
  26. Park J, Lee SB, Lee S, et al. (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441: 1157-1161 https://doi.org/10.1038/nature04788
  27. Parker WD Jr, Parks JK, Swerdlow RH. (2008). Complex I deficiency in Parkinson's disease frontal cortex. Brain Res 1189: 215-218 https://doi.org/10.1016/j.brainres.2007.10.061
  28. Pesah Y, Pham T, Burgess H, et al. (2004). Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 131: 2183-2194 https://doi.org/10.1242/dev.01095
  29. Polymeropoulos MH, Lavedan C, Leroy E, et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276: 2045-2047 https://doi.org/10.1126/science.276.5321.2045
  30. Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ. (2008). The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A 105: 1638-1643 https://doi.org/10.1073/pnas.0709336105
  31. Ramirez A, Heimbach A, Gründemann J, et al. (2006). Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38: 1184-1191 https://doi.org/10.1038/ng1884
  32. Shimura H, Hattori N, Kubo S, et al. (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25: 302-305 https://doi.org/10.1038/77060
  33. Staropoli JF, McDermott C, Martinat C, Schulman B, Demireva E, Abeliovich A. (2003). Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 37: 735-749 https://doi.org/10.1016/S0896-6273(03)00084-9
  34. Valente EM, Abou-Sleiman PM, Caputo V, et al. (2004). Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304: 1158-1160 https://doi.org/10.1126/science.1096284
  35. Vives-Bauza C, Zhou C, Huang Y, et al. (2010). PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107: 378-383 https://doi.org/10.1073/pnas.0911187107
  36. Whitworth AJ, Pallanck LJ. (2009). The PINK1/Parkin pathway: a mitochondrial quality control system? J Bioenerg Biomembr 41: 499-503 https://doi.org/10.1007/s10863-009-9253-3
  37. Wood-Kaczmar A, Gandhi S, Yao Z, et al. (2008). PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS One 3: e2455 https://doi.org/10.1371/journal.pone.0002455
  38. Yang Y, Gehrke S, Imai Y, et al. (2006). Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A 103: 10793-10798 https://doi.org/10.1073/pnas.0602493103
  39. Yang Y, Ouyang Y, Yang L, et al. (2008). Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci U S A 105: 7070-7075 https://doi.org/10.1073/pnas.0711845105
  40. Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM. (2000). Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A 97: 13354-13359 https://doi.org/10.1073/pnas.240347797
  41. Ziviani E, Tao RN, Whitworth AJ. (2010). Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci U S A 107: 5018-5023 https://doi.org/10.1073/pnas.0913485107

Cited by

  1. Role of p53 in Neurodegenerative Diseases vol.9, pp.2, 2012, https://doi.org/10.1159/000329999
  2. Parkin-catalyzed Ubiquitin-Ester Transfer Is Triggered by PINK1-dependent Phosphorylation vol.288, pp.30, 2010, https://doi.org/10.1074/jbc.m113.467530
  3. spargel , the PGC - homologue, in models of Parkinson disease in Drosophila melanogaster vol.16, pp.None, 2015, https://doi.org/10.1186/s12868-015-0210-2
  4. Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation vol.11, pp.10, 2010, https://doi.org/10.1080/15548627.2015.1082020
  5. Image-Based Analysis of Mitochondrial Area and Counting from Adult Mouse Dopaminergic Neurites vol.8, pp.16, 2010, https://doi.org/10.21769/bioprotoc.2471
  6. Emerging protective roles of shengmai injection in septic cardiomyopathy in mice by inducing myocardial mitochondrial autophagy via caspase-3/Beclin-1 axis vol.69, pp.1, 2010, https://doi.org/10.1007/s00011-019-01292-2