DOI QR코드

DOI QR Code

고압비틀림 성형 공정에 의한 Al 기지 CNT 복합재료의 초미세결정 벌크화

Ultrafine Grained Bulk Al Matrix Carbon Nanotube Composites Processed by High Pressure Torsion

  • 주수현 (포항공과대학교 신소재공학과) ;
  • 김형섭 (포항공과대학교 신소재공학과)
  • 투고 : 2010.08.16
  • 심사 : 2010.10.25
  • 발행 : 2010.11.01

초록

Carbon nanotubes(CNTs) are expected to be ideal reinforcements of metal matrix composite materials used in aircraft and sports industries due to their high strength and low density. In this study, a high pressure torsion(HPT) process at an elevated temperature(473K) was employed to achieve both powder consolidation and grain refinement of aluminummatrix nanocomposites reinforced by 5vol% CNTs. CNT/Al nanocomposite powders were fabricated using a novel molecular-level mixing process to enhance the interface bonding between the CNTs and metal matrix before the HPT process. The HPT processed disks were composed of mostly equilibrium grain boundaries. The CNT-reinforced ultrafine grained microstructural features resulted in high strength and good ductility.

키워드

참고문헌

  1. H. S. Kim, Y. Estrin, 2001, Ductility of ultrafine grained copper, Appl. Phys. Lett., Vol. 79, pp. 4115-4117. https://doi.org/10.1063/1.1426697
  2. R. Z. Valiev, I. V. Alexandrov, 2002, Development of severe plastic deformation techniques for the fabrication of bulk nanostructured materials, Ann. Chim. Sci. Mat., Vol. 27, pp. 3-14.
  3. H. Gleiter, 1995, Nanostructured materials: state of the art and perspectives, Nanostruct. Mater., Vol. 6, pp. 3-14. https://doi.org/10.1016/0965-9773(95)00025-9
  4. R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, 2000, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci., Vol. 45, pp. 103-189. https://doi.org/10.1016/S0079-6425(99)00007-9
  5. H. S. Kim, D. N. Lee, 2004, Prediction of the forming limit of porous metals using the finite element method, Mater. Trans., Vol. 45, pp. 1829-1832. https://doi.org/10.2320/matertrans.45.1829
  6. J. Robertson, J. T. Im, I. Karaman, K. T. Hartwig, I. E. Anderson, 2003, Consolidation of amorphous copper based powder by equal channel angular extrusion, J. Non-Cryst. Solids, Vol. 317, pp. 144-151. https://doi.org/10.1016/S0022-3093(02)01995-6
  7. S. C. Yoon, H. S. Kim, 2006, Equal channel angular pressing of metallic powders for nanostructured materials, Mater. Sci. Forum., Vol. 504, pp. 221-226. https://doi.org/10.4028/www.scientific.net/MSF.503-504.221
  8. T. Tokunaga, K. Kaneko, Z. Horita, 2008, Production of aluminum-matrix carbon nanotube composite using high pressure torsion, Mater. Sci. Eng. A, Vol. 490, pp. 300-304. https://doi.org/10.1016/j.msea.2008.02.022
  9. V. N. Popov, 2004, Carbon nanotubes: Properties and application, Mater. Sci. Eng. R, Vol. 43, pp. 61-102. https://doi.org/10.1016/j.mser.2003.10.001
  10. T. Kuzumaki, K. Miyazawa, H. Ichinose, K. Ito, 1998, Processing of carbon nanotube reinforced aluminum composite, J. Mater. Res., Vol. 13, pp. 2445-2449. https://doi.org/10.1557/JMR.1998.0340
  11. S. I. Cha, S. N. Arshad, C. B. Mo, S. H. Hong, 2005, Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing, Adv. Mat., Vol. 17, pp. 1377-1381. https://doi.org/10.1002/adma.200401933
  12. Y. J. Jeong, S. I. Cha, K. T. Kim, K. H. Lee, C. B. Mo, S. H. Hong, 2007, Synergistic strengthening effect of ultrafine-grained metals reinforced with carbon nanotubes, Small, Vol. 3, pp. 840-844. https://doi.org/10.1002/smll.200600523
  13. P. Quang, Y. G. Jeong, S. C. Yoon, S. H. Hong, H. S. Kim, 2007, Consolidation of 1 vol.% carbon nanotube reinforced metal matrix nanocomposites via equal channel angular pressing, J. Mater. Proc. Tech., Vol. 187, pp. 318-320. https://doi.org/10.1016/j.jmatprotec.2006.11.116
  14. K. T. Kim, S. I. Cha, T. Gemming, J. Eckert, S. H. Hong, 2008, The role of interfacial oxygen atoms in the enhanced mechanical properties of carbonnanotube-reinforced metal matrix nanocomposites, Vol. 4, pp. 1936-1940. https://doi.org/10.1002/smll.200701223
  15. H. S. Kim, 2001, Finite element analysis of equal channel angular pressing using a round corner die, Mater. Sci. Eng. A, Vol. 315, pp. 122-128. https://doi.org/10.1016/S0921-5093(01)01188-1
  16. B. S. Moon, H. S. Kim, S. I. Hong, 2002, Plastic flow and deformation homogeneity of 6061 Al during equal channel angular pressing, Scripta Mater., Vol. 46, pp. 131-136. https://doi.org/10.1016/S1359-6462(01)01209-X
  17. Y. Harai, Y. Ito, Z. Horita, 2008, High-pressure torsion using ring specimens, Scripta Mater., Vol. 58, pp. 469-472. https://doi.org/10.1016/j.scriptamat.2007.10.037
  18. Y. Y. Wang, P. L. Sun, P. W. Kao, C. P. Chang, 2004, Effect of deformation temperature on the microstructure developed in commercial purity aluminum processed by equal channel angular extrusion, Scripta Mater., Vol. 50, pp. 613-617. https://doi.org/10.1016/j.scriptamat.2003.11.027
  19. C. Y. Yu, P. L. Sun, P. W. Kao, C. P. Chang, 2004, Evolution of microstructure during annealing of a severely deformed aluminum, Mater. Sci. Eng. A, Vol. 366, pp. 310-317. https://doi.org/10.1016/j.msea.2003.08.039
  20. R. Z. Valiev, N. A. Krasilnikov, N. K. Tsenev, 1991, Plastic deformation of alloys with submicron-grained structure, Mater. Sci. Eng. A, Vol. 137, pp. 35-40. https://doi.org/10.1016/0921-5093(91)90316-F

피인용 문헌

  1. Fabrication and Evaluation of 5 vol%CNT/Al Composite Material by a Powder in Sheath Rolling Method vol.23, pp.11, 2013, https://doi.org/10.3740/MRSK.2013.23.11.607
  2. Fabrication and Evaluation of Carbon Nanotube Reinforced Al Matrix Composite by a Powder-in-sheath Rolling Method vol.21, pp.1, 2014, https://doi.org/10.4150/KPMI.2014.21.1.50
  3. Microstructure and Mechanical Properties of CNT/Al Composite Fabricated by a Powder-in-Sheath Rolling Method utilizing Copper Tube as a Sheath vol.21, pp.5, 2014, https://doi.org/10.4150/KPMI.2014.21.5.343
  4. Grinding Behaviour of Aluminum Powder for Al/CNTs Nano Composites Fabrication by Dry Grinding Process Using a High Speed Planetary Ball Mill vol.23, pp.2, 2013, https://doi.org/10.3740/MRSK.2013.23.2.89