DOI QR코드

DOI QR Code

영상의 동질성 문턱 값 추출과 영역 분할 자동화 방법

Automatic Method for Extracting Homogeneity Threshold and Segmenting Homogeneous Regions in Image

  • 한기태 (경원대학교 IT대학 인터랙티브미디어학과)
  • 투고 : 2010.07.08
  • 심사 : 2010.08.17
  • 발행 : 2010.10.31

초록

본 논문에서는 영상의 동질성 영역 분할을 위한 동질성 문턱 값(Homogeneity Threshold: $H_T$)의 자동 추출과 USRG(Unseeded Region Growing) 기반의 동질성 영역 자동 분할 방법을 제안한다. $H_T$는 인접한 화소들 간에 동질성을 구분하는 기준이 되며, 제안한 방법에 의하여 원본영상으로부터 자동 계산된다. 제안한 방법의 이론적 배경은 Otsu의 단일수준 문턱 값(single level threshold) 방법인데, 이것은 원본 영상의 작은 국소영역을 두 클래스로 분할하기 위하여 사용되고, 두 클래스가 서로 다른 영역으로 구별되는 조건을 만족할 때의 각 클래스의 표준편차의 합($\sigma_c$)을 $H_T$를 계산하기 위한 요소로 사용한다. 제안한 방법의 타당성을 보이기 위해 분할된 동질성 영역들만을 가지고 새롭게 생성한 영상과 원본 영상과의 비교를 통해 시각적으로 차이가 없음을 보이고, 분할된 동질성 영역의 크기순과 화소수가 많은 명암도 순으로 분할된 영역들을 결합한 영상들과 자동 추출된 문턱 값($H_T$)에 범위조정계수 ${\alpha}$을 적용한 값($H^*_T$)를 가지고 분할한 결과 영상들의 제시를 통해 제안한 방법에 대한 타당성을 보였다. 제안한 방법은 해부학이나 생물학의 연구 및 자연 영상의 시각화와 애니메이션 등 다양한 분야에서 활용될 수 있으리라 기대한다.

In this paper, we propose the method for extracting Homogeneity Threshold($H_T$) and for segmenting homogeneous regions by USRG(Unseeded Region Growing) with $H_T$. The $H_T$ is a criterion to distinguish homogeneity in neighbor pixels and is computed automatically from the original image by proposed method. Theoretical background for proposed method is based on the Otsu's single level threshold method. The method is used to divide a small local part of original image int o two classes and the sum($\sigma_c$) of standard deviations for the classes to satisfy special conditions for distinguishing as different regions from each other is used to compute $H_T$. To find validity for proposed method, we compare the original image with the image that is regenerated with only the segmented homogeneous regions and show up the fact that the difference between two images is not exist visually and also present the steps to regenerate the image in order the size of segmented homogeneous regions and in order the intensity that includes pixels. Also, we show up the validity of proposed method with various results that is segmented using the homogeneity thresholds($H^*_T$) that is added a coefficient ${\alpha}$ for adjusting scope of $H_T$. We expect that the proposed method can be applied in various fields such as visualization and animation of natural image, anatomy and biology and so on.

키워드

참고문헌

  1. NOBUYUKI OTSU, “A Threshold Selection Method fromGray-Level Histograms,” IEEE TRANSACTION ONSYSTEM, MAN, AND CYBERNETICS, VOL.SMC-9, No.1,pp.62-66, JANUARY 1979.
  2. Deng-Yuan Hang, Chia-Hung Wang, “Optimal multi-levelthresholding using a two-stage Otsu optimization approach,”Pattern Recognition Letters 30, pp.275-284, 2009. https://doi.org/10.1016/j.patrec.2008.10.003
  3. Harikrishna Rai G.N, T.R.Gopalakrishnan Nair, “GradientBased Seeded Region Grow method for CT AngiographicImage Segmentation,” InterJRI Computer Science andNetworking, Vol. 1, Issue 1, pp.1-6, 2009.
  4. Octavio Gomez, Jesus A. Gonzalez, and Eduardo F. Morales,“Image Segmentation Using Automatic Seeded RegionGrowing and Instance-based Learning,” Lecture Notes InComputer Science archive Proceedings of the Congress onpattern recognition 12th Iberoamerican conference onProgress in pattern recognition, image analysis andapplications, pp.192-201, 2007.
  5. Hui-Fuang Ng, “Automatic thresholding for defectdetection,” Pattern Recognition Letters, pp.1-6, 2006.
  6. Ch.Hima Bindu, QISCET, Ongole, “AN IMPROVED MEDICALIMAGE SEGMENTATION ALGORITHM USING OTSUMETHOD,” SHORT PAPER Internal Journal of RecentTrends in Engineering, VOL2, No.3, pp.88-90, November 2009.
  7. PING-SUNG LIAO, TSE-SHENG CHEN AND PAU-CHOOCHUNG, “A Fast Algorithm for Multilevel Thresholding,”JOURNAL OF INFORMATION SCIENCE ANDENGINEERING 17, pp.713-727, 2001.
  8. Soumya Dutta, Bidyut B. Chaudhuri, “Homogeneous Regionbased Color Image Segmentation,” Proceedings of the WorldCongress on Engineering and Computer Science 2009 Vol.II WCECS 2009, October 20-22,2009, San Francisco, USA.
  9. Chantal Revol-Muller, Francoise Peyrin, Yannick Carrillon,and Christophe Odet, “Automated 3D region growingalgorithm based on an assessment function”, PatternRecognition Letters 23, pp.137-150, 2002. https://doi.org/10.1016/S0167-8655(01)00116-7
  10. Zheng Lin, Jesse Jin and Hugues Tabot, “Unseeded regiongrowing for 3D image segmentation,” ACM InternationalConference Proceeding Series Vol. 9, Selected papers fromthe Pan-Sydney workshop on Visualisation Volume 2,Sydney, Australia, pp.31-37, 2000.
  11. Hakan BULU and Adil ALPKOCAK, “Comparison of 3DSegmentation Algorithm for Medical Imaging,” 20Th IEEEInternational Symposium on Computer-Based MedicalSystems(CBMS'07), 2007.
  12. Olver Wrjadi, “Survey of 3D Image Segmentation Methods,”Models and Algorithms in Image Processing FraunhoferITWM, Kaiserslautern, pp.1-20, 2007.
  13. 이철학, 김상운, “Otsu의 방법을 개선한 멀티 스래쉬홀딩 방법,” 대한전자공학회논문지-CI, Vol.43, No.5, pp.407-415, 2006.
  14. 김민정, 이정민, 김명희 “명암도 응집성 강화 및 분류를 통한 3차원 뇌 영상 구조적 분할,” 정보처리학회논문지 A 제13-A권 제5호, pp.465-472, 2006.