DOI QR코드

DOI QR Code

Lipid Lowering and Antioxidant Effects of Newly Synthesized 4-[(Butylsulfinyl)methyl]-1,2-benzenediol (SMBD) in Diet-induced Hypercholesterolemic Rabbits

  • Kim, Hyun-Ju (Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University) ;
  • Noh, Jeong-Sook (Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University) ;
  • Kwon, Myung-Ja (Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University) ;
  • Song, Su-Hee (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Suh, Hong-Suk (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kim, Mi-Jeong (Department of Food and Nutrition, Silla University) ;
  • Song, Yeong-Ok (Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University)
  • Received : 2010.05.17
  • Accepted : 2010.09.15
  • Published : 2010.11.20

Abstract

We investigated the effects of newly synthesized 4-[(butylsulfinyl)methyl]-1,2-benzenediol (SMBD) on the prevention of atherosclerosis in hypercholesterolemic rabbits. SMBD exhibited stronger inhibition of $Cu^{2+}$-induced low-density lipoprotein oxidation than that of ascorbic acid or simvastatin. Three-month-old rabbits were fed an atherogenic diet containing 0.5% cholesterol and 10% coconut oil, while other two groups were given an atherogenic diet with intravenous injection of either simvastatin or SMBD (0.33 mg/kg/day) for 4 weeks. The concentrations of plasma cholesterol and thiobarbituric acid reactive substances were significantly decreased in SMBD groups, compared to the control group. Also, aortic lipid level in the SMBD group significantly lower than that in the control group. Furthermore, compared with the control group, the SMBD group significantly inhibited the increase of aortic intimal thickness by 36% via reducing of aortic reactive oxygen species and cyclooxygenase-2 protein levels. We conclude that raised antioxidant effect of SMBD results in significant prevention against hypercholesterolemia.

Keywords

References

  1. Berliner, J. A.; Navab, M.; Fogelman, A. M.; Frank, J. S.; Demer, L. L; Edwards, P. A.; Watson, A. D.; Lusis, A. J. Circulation 1995, 91, 2488. https://doi.org/10.1161/01.CIR.91.9.2488
  2. Lusis, A. J. Nature 2000, 407, 233. https://doi.org/10.1038/35025203
  3. Galle, J.; Hansen-Hagge, T.; Wanner, C.; Seibold, S. Atherosclerosis 2006, 185, 219. https://doi.org/10.1016/j.atherosclerosis.2005.10.005
  4. Chen, K.; Thomas, S. R.; Keaney, J. F. Free Radic. Biol. Med. 2003, 15, 117.
  5. Landino, L. M.; Crews, B. C.; Timmons, M. D.; Morrow, J. D.; Marnett, L. J. Proc. Nat. Acad. Sci. USA 1996, 93, 15069. https://doi.org/10.1073/pnas.93.26.15069
  6. Schonbeck, U.; Sukhova, G. K.; Graber, P.; Coulter, S.; Libby, P. Am. J. Pathol. 1999, 155, 1281. https://doi.org/10.1016/S0002-9440(10)65230-3
  7. Burleigh, M. E.; Babaev, V. R.; Oates, J. A.; Harris, R. C.; Gautam, S.; Riendeau, D.; Marnett, L. J.; Morrow, J. D.; Fazio, S.; Linton, M. F. Circulation 2002, 105, 1816. https://doi.org/10.1161/01.CIR.0000014927.74465.7F
  8. Cipollone, F.; Fazia, M. L. J. Cardiovasc. Pharmacol. 2006, 47, S26.
  9. Bravo, L. Nutr. Rev. 1998, 56, 317. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x
  10. Kaliora, A. C.; Dedoussis, G. V. Z.; Schmidt, H. Atherosclerosis 2006, 187, 1. https://doi.org/10.1016/j.atherosclerosis.2005.11.001
  11. Diaz, M. N.; Frei, B.; Vita, J. A.; Keaney, J. F. N. Engl. J. Med. 1997, 337, 408. https://doi.org/10.1056/NEJM199708073370607
  12. Gotto, A. M. Am. J. Med. 2002, 112, 10. https://doi.org/10.1016/S0002-9343(02)01085-9
  13. Igel, M.; Sudhop, T.; von Bergmann, K. Eur. J. Clin. Pharmacol. 2001, 57, 357.
  14. Palozza, P.; Simone, R.; Picci, N.; Buzzoni, L.; Ciliberti, N.; Natangelo, A.; Manfredini, S.; Vertuani, S. Free Radic. Biol. Med. 2008, 44, 1452. https://doi.org/10.1016/j.freeradbiomed.2008.01.001
  15. Siddaiah, V.; Maheswara, M.; Venkata Roa, C.; Venkateswarlu, S.; Subbaraju, G. V. Bioorg. Med. Chem. Lett. 2007, 17, 1288. https://doi.org/10.1016/j.bmcl.2006.12.008
  16. Hatano, T.; Edamatsu, R.; Hiramatsu, M.; Mori, A.; Fujita, Y.; Yasuhara, T.; Yoshida, T.; Okuda, T. Chem. Pharm. Bull. 1989, 37, 2016. https://doi.org/10.1248/cpb.37.2016
  17. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. J. Biol. Chem. 1951, 193, 265.
  18. Schuh, J.; Fairclough, G. F.; Haschemeyer, R. H. Proc. Natl. Acad. Sci. USA 1978, 75, 3173. https://doi.org/10.1073/pnas.75.7.3173
  19. Yagi, K. Methods Mol. Biol. 1998, 108, 101.
  20. Friedwald, W.; Levy, R. I. Clin. Chem. 1972, 18, 494.
  21. Folch, J.; Lees, M.; Sloane-Stanley, G. H. J. Biol. Chem. 1957, 226, 497.
  22. Cathcart, R.; Schwiers, E.; Ames, B. W. Methods Enzymol. 1984, 105, 352. https://doi.org/10.1016/S0076-6879(84)05047-3
  23. LeBel, C. P.; Ischiropoulos, H.; Bondy, S. C. Chem. Res. Toxicol. 1992, 5, 227. https://doi.org/10.1021/tx00026a012
  24. Oberley, L. W. Free Radic. Biol. Med. 1988, 5, 113. https://doi.org/10.1016/0891-5849(88)90036-6
  25. Zou, Y.; Jung, K. J.; Kim, J. W.; Yu, B. P.; Chung, H. Y. FASEB J. 2004, 18, 320.
  26. Laemmli, U. K. Nature 1970, 227, 680. https://doi.org/10.1038/227680a0
  27. Tejero, I.; Gonzalez-García, N.; Gonzalez-Lafont, A.; Lluch, J. M. J. Am. Chem. Soc. 2007, 129, 5846. https://doi.org/10.1021/ja063766t
  28. Hanasaki, Y.; Ogawa, S.; Fukui, S. Free Radic. Biol. Med. 1994, 16, 845. https://doi.org/10.1016/0891-5849(94)90202-X
  29. Wakata, N.; Sugimoto, H.; Iguchi, H.; Nomoto, N.; Kinoshita, M. Neurochem. Res. 2001, 26, 841. https://doi.org/10.1023/A:1011672304666
  30. Owen, P. L.; Matainaho, T.; Sirois, M.; Johns T. J. Biochem. Mol. Toxicol. 2007, 21, 231. https://doi.org/10.1002/jbt.20186
  31. Ross, R.; Glomset, J. A. Science 1973, 180, 1332. https://doi.org/10.1126/science.180.4093.1332
  32. Bolayirli, I. M.; Aslan, M.; Balci, H.; Altug, T.; Hacibekiroglu, M.; Seven, A. Life Sci. 2007, 81, 121. https://doi.org/10.1016/j.lfs.2007.04.027
  33. Kim, S. J.; Bok, S. H.; Lee, S.; Kim, H. J.; Lee, M. K.; Park, Y. B.; Choi, M. S. Toxicol. Appl. Pharmacol. 2005, 208, 29. https://doi.org/10.1016/j.taap.2005.01.012
  34. im, H. J.; Lee, J. S.; Chung, H. Y.; Song, S. H.; Suh, H.; Noh, J. S.; Song, Y. O. J. Agric. Food Chem. 2007, 55, 10486. https://doi.org/10.1021/jf072454m
  35. Takemoto, M.; Liao, J. K. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 1712. https://doi.org/10.1161/hq1101.098486
  36. Nagano, Y.; Nakamura, T.; Matsuzawa, Y.; Cho, M.; Ueda, Y.; Kita, T. Atherosclerosis 1992, 92, 131. https://doi.org/10.1016/0021-9150(92)90272-I
  37. Yamaguchi, Y.; Matsuno, S.; Kagota, S.; Haginaka, J.; Kunitomo, M. Eur. J. Pharmacol. 2002, 436, 97.
  38. Shakuto, S.; Oshima, K.; Tsuchiya, E. Atherosclerosis 2005, 182, 209. https://doi.org/10.1016/j.atherosclerosis.2005.01.044
  39. Libby, P. Nature 2002, 420, 868. https://doi.org/10.1038/nature01323
  40. Quiles, J. L.; Mesa, M. D.; Ramírez-Tortosa, C. L.; Aguilera, C. M.; Battino, M.; Gil, A.; Ramírez-Tortosa, M. C. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1225. https://doi.org/10.1161/01.ATV.0000020676.11586.F2
  41. Ohara, Y.; Peterson, T. E.; Harrison, D. G. J. Clin. Invest. 1993, 91, 2546. https://doi.org/10.1172/JCI116491
  42. Frei, B. Proc. Soc. Exp. Biol. Med. 1999, 222, 196. https://doi.org/10.1046/j.1525-1373.1999.d01-136.x
  43. Cheng, Y.; Austin, S. C.; Rocca, B.; Koller, B. H.; Coffman, T. M.; Grosser, T.; Lawson, J. A.; FitzGerald, G. A. Science 2002, 296, 539. https://doi.org/10.1126/science.1068711
  44. Valledor, A. F.; Ricote, M. Biochem. Pharmacol. 2004, 67, 201. https://doi.org/10.1016/j.bcp.2003.10.016

Cited by

  1. Photodynamic and Antioxidant Activities of Divalent Transition Metal Complexes of Methyl Pheophorbide-a vol.32, pp.spc8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2981
  2. Synthesis and antioxidant activity of 5-hydroxycoumarans, 6-hydroxychromanes and sulfur-containing derivatives on their base vol.62, pp.6, 2013, https://doi.org/10.1007/s11172-013-0200-4
  3. Anti-Inflammatory Potential of Newly Synthesized 4-[(Butylsulfinyl)methyl]-1,2-benzenediol in Lipopolysaccharide-Stimulated BV2 Microglia vol.19, pp.10, 2014, https://doi.org/10.3390/molecules191016609
  4. Crystal and molecular structure of the reaction product of 7-mercapto-4-methylcoumarin with iodine vol.68, pp.6, 2019, https://doi.org/10.1007/s11172-019-2544-x