DOI QR코드

DOI QR Code

Increase in Discharge Capacity of Li Battery Assembled with Electrochemically Prepared V2O5/polypyrrole-composite-film Cathode

  • Kim, You-Na (Division of Energy Systems Research, Ajou University) ;
  • Kim, Joo-Seong (Division of Energy Systems Research, Ajou University) ;
  • Thieu, Minh-Triet (Division of Energy Systems Research, Ajou University) ;
  • Dinh, Hung-Cuong (Division of Energy Systems Research, Ajou University) ;
  • Yeo, In-Hyeong (Department of Chemistry, Dongguk University) ;
  • Cho, Won-Il (Advanced Battery Center, Korea Institute of Science and Technology) ;
  • Mho, Sun-Il (Division of Energy Systems Research, Ajou University)
  • Received : 2010.07.16
  • Accepted : 2010.09.14
  • Published : 2010.11.20

Abstract

Flexible composite films of $V_2O_5$ and conductive polypyrrole ($V_2O_5$/PPy) were grown by facile electrochemical polymerization, wherein an anodization potential was applied to the substrate electrode in an electrolyte solution containing pyrrole monomer and dispersed $V_2O_5$ particles. The coating of polypyrrole (PPy) on the surface of $V_2O_5$ particles was induced by the oxidative catalytic action of $V_2O_5$ during the electrochemical polymerization of pyrrole. PPy in the composite film connects the isolated $V_2O_5$ particles. This results in the formation of conductive networks in the composite film cathode, thereby enhancing the Li+ ion diffusion to the surface of the isolated $V_2O_5$ particles and thus increasing the accessibility of the $Li^+$ ions. The specific capacity tests of the Li rechargeable batteries revealed that the discharge capacity of this composite film cathode was higher, i.e., $497\;mAhg^{-1}$, than that of $V_2O_5$/PPy powder or pristine $V_2O_5$.

Keywords

References

  1. Delmas, C.; Cognac-Auradou, H.; Cocciantelli, J. M.; Menetrier, M.; Doumerc, J. P. Solid State Ionics. 1994, 69, 257. https://doi.org/10.1016/0167-2738(94)90414-6
  2. West, K.; Zachau-Christiansen, B.; Jacobsen, J.; Shaarup, S. Solid State Ionics. 1995, 76, 15. https://doi.org/10.1016/0167-2738(95)94037-M
  3. Desilvestro, J.; Haas, O. J. Electrochem. Soc. 1990, 137, 5C. https://doi.org/10.1149/1.2086438
  4. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; Van Schalkwijk, W. Nature Mater. 2010, 4, 366. https://doi.org/10.1038/nmat1368
  5. Reddy, Ch. V. S.; Park, K.-I.; Mho, S.-I.; Yeo, I.-H.; Park, S.-M. Bull. Korean Chem. Soc. 2008, 29, 2061. https://doi.org/10.5012/bkcs.2008.29.10.2061
  6. Giorgetti, M.; Passerini, S.; Smyrl, W. H.; Berrettoni, M. Inorg. Chem. 2000, 39, 1514. https://doi.org/10.1021/ic9913233
  7. Petkov, V.; Trikalitis, P. N.; Bozin, E. S.; Billinge, S. J. L.; Vogt, T.; Kanatzidis, M. G. J. Am. Chem. Soc. 2002, 124, 10157. https://doi.org/10.1021/ja026143y
  8. Malinauskas, A.; Malinauskiene, J.; Ramanavicius, A. Nanotechnology 2005, 16, R51. https://doi.org/10.1088/0957-4484/16/10/R01
  9. Sadki, S.; Schottland, P.; Brodie, N.; Sabouraud, G. Chem. Soc. Rev. 2000, 29, 283. https://doi.org/10.1039/a807124a
  10. Duchet, J.; Legras, R.; Demoustier-Champagne, S. Synth. Met. 1998, 98, 113. https://doi.org/10.1016/S0379-6779(98)00180-5
  11. Song, M.-K.; Park, J.-K.; Yeo, I.-H.; Rhee, H.-W. Synth. Met. 1999, 99, 219. https://doi.org/10.1016/S0379-6779(98)01504-5
  12. Chung, S.-M.; Paik, W.-K.; Yeo, I.-H. Synth. Met. 1997, 84, 155. https://doi.org/10.1016/S0379-6779(97)80690-X
  13. Goward, G. R.; Lerous, F.; Nazar, L. F. Electrochim. Acta 1998, 43, 1307. https://doi.org/10.1016/S0013-4686(97)10035-4
  14. Demets, G. J. F.; Anaissi, F. J.; Toma, H. E. Electrochim. Acta 2000, 46, 547. https://doi.org/10.1016/S0013-4686(00)00635-6
  15. Boyano, I.; Bengoechea, M.; de Meatza, I.; Miguel, O.; Cantero, I.; Ochoteco, E.; Rodriguez, J.; Lira-Cantu, M.; Gomez-Romero, P. J. Power Sources 2007, 166, 471. https://doi.org/10.1016/j.jpowsour.2006.12.106
  16. Kuwabata, S.; Masui, S.; Tomiyori, H.; Yoneyama, H. Electrochim. Acta 2000, 46, 91. https://doi.org/10.1016/S0013-4686(00)00565-X
  17. Huguenin, F.; Girotto, E. M.; Torresi, R. M.; Buttry, D. A. J. Electroanal. Chem. 2002, 536, 37. https://doi.org/10.1016/S0022-0728(02)01188-9
  18. Suga, T.; Ohshiro, H.; Sugita, S.; Oyaizu, K.; Nishide, H. Adv. Mater. 2009, 20, 1. https://doi.org/10.1002/adma.200890067
  19. Armand, M.; Tarascon, J.-M. Nature 2008, 451, 652. https://doi.org/10.1038/451652a
  20. Mho, S.-I.; Reddy, Ch. V. S.; Kim, Y.; Yeo, I.-H.; Park, S.-M. J. Korean Phys. Soc. 2009, 54, 2420. https://doi.org/10.3938/jkps.54.2420
  21. Wang, Y.; Takahashi, K.; Lee, K.; Cao, G. Adv. Funct. Mater. 2006, 16, 1133. https://doi.org/10.1002/adfm.200500662
  22. Tarascon, J.-M.; Armand, M. Nature 2001, 414, 359. https://doi.org/10.1038/35104644
  23. Whittingham, M. S. Chem. Rev. 2004, 104, 4271. https://doi.org/10.1021/cr020731c

Cited by

  1. Vanadium Oxide Nanowire-Carbon Nanotube Binder-Free Flexible Electrodes for Supercapacitors vol.1, pp.5, 2011, https://doi.org/10.1002/aenm.201100221
  2. Vanadium Oxide Nanotube Spherical Clusters Prepared on Carbon Fabrics for Energy Storage Applications vol.3, pp.11, 2011, https://doi.org/10.1021/am2011965
  3. Impact of mechanical bending on the electrochemical performance of bendable lithium batteries with paper-like free-standing V2O5–polypyrrole cathodes vol.22, pp.22, 2012, https://doi.org/10.1039/c2jm16470a
  4. Nano Structured Potentiometric Sensors Based on Polyaniline Conducting Polymer for Determination of Cr (VI) vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1247
  5. Cu2O nanowires as anode materials for Li-ion rechargeable batteries vol.57, pp.6, 2014, https://doi.org/10.1007/s11431-014-5509-1
  6. New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses vol.4, pp.1, 2014, https://doi.org/10.1038/srep07113
  7. Polymer-Based Organic Batteries vol.116, pp.16, 2016, https://doi.org/10.1021/acs.chemrev.6b00070
  8. Electrochemical Impedance Analysis of V2O5 and PEDOT Composite Film Cathodes vol.23, pp.9, 2010, https://doi.org/10.1002/elan.201100177
  9. Determination of Li+ Diffusion Coefficients in the LixV2O5 (x = 0 - 1) Nanocrystals of Composite Film Cathodes vol.29, pp.11, 2010, https://doi.org/10.2116/analsci.29.1083