Thermal Plasma Synthesis of Nano Composite Particles

열플라즈마에 의한 복합 나노 입자 제조

  • Received : 2010.10.22
  • Accepted : 2010.10.27
  • Published : 2010.12.10

Abstract

Nano composite particles were synthesized from a bulk ZrVFe alloy ingot by transferred DC thermal plasma. Effects of plasma gas flow rate on the characteristics of the produced nano composite particles were investigated. The characteristics of the synthesized powder were analyzed by field scanning electron microscopy (FE-SEM), light scattering particle size analyzer (PSA), energy dispersive X-ray spectroscopy (EDS), X-ray diffractometer (XRD), and Brunauer-Emmett-Teller (BET) surface area analyzer. As the flow rate of plasma gas increased from 20 L/min to 40 L/min, the average particle size decreased from 91 nm to 55 nm, the particle size distribution became narrower, the surface area increased from $200\;m^2/g$ to $255\;m^2/g$, the particle composition was nearly unaffected, and the particle crystallinity was improved.

이송식 직류 열플라즈마를 이용하여 ZrVFe 합금모재로부터 복합 나노 입자를 제조하여 플라즈마 가스 유량이 제조된 입자의 특성에 미치는 영향을 분석하였다. 입자의 특성은 전계방출 주사전자 현미경(FE-SEM), 입도 분석기(PSA), X선 분광기(EDS), X선 회절계(XRD), Brunauer-Emmett-Teller (BET) 비표면적 측정기를 사용하여 분석하였다. 플라즈마 가스 유량을 20 L/min에서 40 L/min으로 증가시키면 평균입자크기가 91 nm에서 55 nm로 감소하며 입도분포의 기하학적 편차가 줄어들었고 비표면적은 $200m^2/g$에서 $255m^2/g$으로 증가하였으며 제조된 입자의 조성에는 큰 영향을 미치지 못했지만 결정성이 향상되었다.

Keywords

References

  1. W. B. Choi, B. K. Ju, Y. H. Lee, S. J. Jeong, N. Y. Lee, M. Y. Sung, and M. H. Oh, J. Electrochem. Soc., 146, 400 (1999). https://doi.org/10.1149/1.1391621
  2. G. Chakhovskoi, C. E. Hunt, and M. E. Malinowski, Displays, 19, 179 (1999). https://doi.org/10.1016/S0141-9382(98)00048-1
  3. R. Chalamala, D. Uebelhoer, and K. A. Dean, J. Vac. Sci. Technol. A, 18, 343 (2000). https://doi.org/10.1116/1.582190
  4. D. Petti, M. Cantoni, M. Leone, R. Bertacco, and E. Rizzi, Appl. Surf. Sci., 256, 6291 (2010). https://doi.org/10.1016/j.apsusc.2010.04.006
  5. P. Roupcová and O. Schneeweiss, J. Alloys Compd., 492, 160, (2010). https://doi.org/10.1016/j.jallcom.2009.11.147
  6. W. Liu, D. Wu, and J. Yang, Int. J. Mater. Prod. Tech., 37, 297 (2010). https://doi.org/10.1504/IJMPT.2010.031429
  7. H. Y. Koo, J. H. Yi, and Y. C. Kang, J. Alloys Compd., 489, 456 (2010). https://doi.org/10.1016/j.jallcom.2009.09.084
  8. S. Oh and S. Lee, J. Nanosci. Nanotechnol., 10, 366 (2010). https://doi.org/10.1166/jnn.2010.1544
  9. X. Xi, X. Xu, Z. Nie, S. He, W. Wang, J. Yi, and Z. Tieyong, Int. J. Refract. Met. Hard Mater., 28, 301 (2010). https://doi.org/10.1016/j.ijrmhm.2009.10.014
  10. C. A. Crouse, E. Shin, P. T. Murray, and J. E. Spowart, Mater. Lett., 64, 271 (2010). https://doi.org/10.1016/j.matlet.2009.10.060
  11. L. H. Bac, Y. S. Kwon, J. S. Kim, Y. I. Lee, D. W. Lee, and J. C. Kim, Mater. Res. Bull., 45, 352 (2010). https://doi.org/10.1016/j.materresbull.2009.12.008
  12. A. J. Song, M. Z. Ma, W. G. Zhang, H. T. Zong, S. X. Liang, Q. H. Hao, R. Z. Zhou, Q. Jing, and R. P. Liu, Mater. Lett., 64, 1229 (2010). https://doi.org/10.1016/j.matlet.2010.02.061