Pyrolysis and Combustion Characteristics of an Pinus densiflora for the Protection of Forest Resources

산림자원 보호를 위한 적송의 열분해 및 연소 특성 연구

  • Park, Jin-Mo (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Seung-Soo (Department of Chemical Engineering, Kangwon National University)
  • 박진모 (강원대학교 삼척캠퍼스 화학공학과) ;
  • 김승수 (강원대학교 삼척캠퍼스 화학공학과)
  • Received : 2010.09.10
  • Accepted : 2010.09.13
  • Published : 2010.12.10

Abstract

The forest area of domestic is 6370304 ha, which covers 70% of the whole country, and especially Gangwon-do is remarkably larger than other Province. A thick forest of the country has the most basic component among other natural environments as well as it has invaluable worth to human being such as scientific research and educational value. However due to the breakout of forest fire since 1990s, the loss of trees, destruction of natural environment and ecology, economic damage have been occurring and its scale also has become larger. The causes of becoming larger in scale are resulted from forest components which mainly consist of needle leaf trees, wide leaf trees, fallen leaves, herbaceous plants so that it has been a direct cause for forest fire. However, few research on combustion and pyrolysis characteristics has been done in domestic and abroad. The study on the combustion and pyrolysis for Pinus densiflora which are typical needle leaf trees has been tried using TGA. Pinus desiflora started to being ignited at around $162^{\circ}C$ and pyrolysis was done at around $197^{\circ}C$. Differential method was applied to calculate activation energy and frequency factor according to the variation of conversion. Activation energy in pyrolysis was increased from 79 kJ/mol to 487 kJ/mol with increasing conversion and average activation energy was 195 kJ/mol. The activation energy in combustion was decreased from 148 kJ/mol to 133 kJ/mol.

우리나라의 산림면적은 전국토의 70%인 6370304 ha이며 강원도 지역이 타지역에 비해 월등히 넓다. 우리나라의 울창한 산림은 자연환경 중에서 가장 기초적인 구성요소이며 과학 및 교육적 가치 등 인간에게 없어서는 안될 중요한 가치들을 지니고 있다. 그러나 1990년대 이후로 산불발생이 증가함에 따라 수목의 손실과 자연환경 생태계 파괴, 경제적인 손실이 발생하고 산불발생시 그 규모도 대형화 되고 있다. 규모가 대형화 되는 원인은 산림 내의 침엽수, 활엽수, 낙엽, 초본류 등이 많기 때문에 화세를 키우는 직접적 문제점이라 할 수 있다. 이런 현실과 달리 국 내외에서는 수종별 연소특성과 열분해특성 연구가 많이 부족한 실정이며 본 논문에서는 대표적 침엽수인 적송을 대상으로 TGA를 이용해 연소특성 및 열분해반응에 대한 연구를 하였다. 적송은 $162^{\circ}C$ 부근에서 발화가 시작되며 열분해는 $197^{\circ}C$에서부터 시작되었다. TGA 분석으로 얻은 데이터는 미분법을 적용하여 전화율 변화에 따라 활성화에너지와 빈도인자를 계산하였다. 열분해반응에서 활성화 에너지는 전화율 증가에 따라 79~487 kJ/mol로 증가하였고 평균활성화에너지는 195 kJ/mol이었다. 연소과정에서의 활성화에너지는 148~133 kJ/mol로 감소하였다.

Keywords

References

  1. http://www.forest.go.kr/foahome
  2. http://sanfire.forest.go.kr/foahome
  3. M. W. Lee, Analysis of occurance and characteristics of forest fires yeong-dong and yeong-se regions in Gangwon-do, Research Institute for Gangwon, Project No. 09-05 (2009).
  4. D. L. Fry and S. L. Stephens, Forest. Ecol. Manag., 223, 428 (2006). https://doi.org/10.1016/j.foreco.2005.12.021
  5. K. L. Metlen and C. E. Fiedler, Forest. Ecol. Manag., 222, 355 (2006). https://doi.org/10.1016/j.foreco.2005.10.037
  6. R. P. Guyette and M. A. Spetich, Forest. Ecol. Manag., 180, 463 (2003). https://doi.org/10.1016/S0378-1127(02)00613-8
  7. M. M. Boer, R. J. Sadler, R. S. Wittkuhn, L. McCaw, and P. F. Grierson, Forest. Ecol. Manag., 259, 132 (2009). https://doi.org/10.1016/j.foreco.2009.10.005
  8. S.-Y. Lee and H.-P. Lee, J. of Korean Institute of Fire Sci. & Eng., 20, 54 (2006)
  9. H.-P. Lee, S.-Y. Lee, and Y.-J. Park, J. of Korean Institute of Fire Sci. & Eng., 23, 21 (2009).
  10. Y. J. Chung, J. of Ind. Eng. Chem., 16, 15 (2010). https://doi.org/10.1016/j.jiec.2010.01.031
  11. Annual Book of ASTM Standard (1997).
  12. Y.-H. Park, J. Kim, S.-S. Kim, and Y.-K. Park, Bioresource Technol., 100, 400 (2009). https://doi.org/10.1016/j.biortech.2008.06.040
  13. S.-S. Kim and F. A. Agblevor, Waste Manage., 27, 135 (2007). https://doi.org/10.1016/j.wasman.2006.01.012
  14. A. Demirbas, Fuel, 76, 431 (1997). https://doi.org/10.1016/S0016-2361(97)85520-2
  15. M. Muller-Hagedorn, H. Bockhorn, L. Krebs, and U. Muller, J. Anal. Appl. Pyrol., 68, 231 (2003). https://doi.org/10.1016/S0165-2370(03)00065-2
  16. T. B. Reed and S. Gaur, Biomass Bioenerg., 7, 143 (1994). https://doi.org/10.1016/0961-9534(94)00053-V
  17. T. Fisher, M. Hajaligol, B. Waymack, and D. Kellogg, Ind. Eng. Chem. Res., 36, 1444 (2003).
  18. Y.-H. Seo, J.-M. Park, M. W. Lee, J. Kim, and S.-S. Kim, Appl. Chem. Eng., 21, 575 (2010).