Partial Oxidation of Methane to $H_2$ Over Pd/Ti-SPK and Pd/Zr-SPK Catalysts and Characterization

Pd/Ti-SPK과 Pd/Zr-SPK 촉매상에서 수소 생산을 위한 메탄의 부분산화반응과 촉매의 특성화

  • Seo, Ho-Joon (Division of Biotechnology and Chemical Engineering, Chonnam National University) ;
  • Kang, Ung-Il (Faculty of Applied Chemical Engineering, Chonnam National University)
  • 서호준 (전남대학교 생명화학공학부) ;
  • 강웅일 (전남대학교 응용화학공학부)
  • Received : 2010.08.23
  • Accepted : 2010.09.13
  • Published : 2010.12.10

Abstract

Catalytic activities of the partial oxidation of methane (POM) to hydrogen were investigated over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK in a fixed bed flow reactor (FBFR) under atmosphere, and the catalysts were characterized by BET, XPS, XRD. The BET surface areas, pore volume and pore width of Horvath-Kawaze, micro pore area and volume of t-plot of Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were $284m^2/g$, $0.233cm^3/g$, 3.9 nm, $30m^2/g$, $0.015cm^3/g$ and $396m^2/g$, $0.324cm^3/g$, 3.7nm, $119m^2/g$, $0.055cm^3/g$, repectively. The nitrogen adsorption isotherms were type IV with hysteresis. XPS showed that Si 2p and O 1s core electronlevels of Ti-SPK and Zr-SPK substituted Ti and Zr shifted to slightly lower binding energies than SPK. The oxidation states of Pd on the surface of catalysts were $Pd^0$ and $Pd^{+2}$. XRD patterns showed that crystal structures of fresh catalyst changed amorphous into crystal phase after reaction. The conversion and selectivity of POM to hydrogen over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were 77, 84% and 78, 72%, respectively, at 973 K, $CH_4/O_2$ = 2, GHSV = $8.4{\times}10^4mL/g_{cat}{\cdot}h$ and were kept constant even after 3 days in stream. These results confirm superior activity, thermal stability, and physicochemical properties of catalyst in POM to hydrogen.

고정층 상압 흐름 반응기에서 메탄의 부분산화반응를 수행하여 메탄으로부터 수소제조 위한 촉매의 활성도를 평가하였고, BET, XPS, XRD를 사용하여 촉매의 특성을 분석하였다. Pd(5)/Ti-SPK과 Pd(5)/Zr-SPK 촉매의 BET 표면적, Horvath-Kawaze의 기공부피와 기공폭, t-플롯 미세기공 면적과 부피는 각각 $284m^2/g$, $0.233cm^3/g$, 3.9 nm, $30m^2/g$ $0.015cm^3/g$$396m^2/g$, $0.324cm^3/g$, 3.7 nm, $119m^2/g$, $0.055cm^3/g$이었다. 촉매는 히스테리시스가 잘 발달된 IV형 임을 $N_2$-흡착등온선으로부터 확인할 수 있었다. XPS분석으로부터 SPK에 Ti와 Zr이 부분 치환된 Ti-SPK과 Zr-SPK의 Si 2p과 O 1s 피크는 SPK의 Si 2p와 O 1s 피크 보다 낮은 결합에너지 쪽으로 화학 이동함을 알 수 있었고, 촉매표면의 Pd의 산화상태는 $Pd^0$$Pd^{+2}$이었다. XRD의 결정 피크는 반응 전에 무정형인 촉매가 반응 후에는 결정상으로 변함을 보여주었다. Pd(5)/Ti-SPK과 Pd(5)/Zr-SPK 촉매의 메탄의 전화율과 수소의 선택도는 973 K, $CH_4/O_2$ = 2, GHSV = $8.4{\times}10^4mL/g_{cat}{\cdot}h$. 반응조건에서 각각 77, 84%와 78, 72%이었고, 반응 시작 후 3일까지도 촉매의 활성이 거의 일정하게 유지되었다. Pd(5)/Ti-SPK과 Pd(5)/Zr-SPK 촉매는 메탄의 부분산화반응에서 활성도와 열 안정성 및 물리화학적 성질이 우수하였다.

Keywords

References

  1. F. Sadi, D. Duprez, G. Francois, and A. Miloudi, J. Catal., 213, 226 (2003). https://doi.org/10.1016/S0021-9517(02)00080-5
  2. P. S. Maiya, T. J. Anderson, R. L. Mieville, J. T. Dusek, and J. J. Picciolo, U. Balachandran, Appl. Catal. A: General, 196, 65 (2000). https://doi.org/10.1016/S0926-860X(99)00455-X
  3. F.-J. Spiess, S. L. Suib, K. Irie, Y. Hayashi, and H. Matsumoto, Catal. Today, 89, 35 (2004). https://doi.org/10.1016/j.cattod.2003.11.043
  4. H. J. Seo and E. Y. Yu, J. Ind. Eng. Chem., 11, 681 (2005).
  5. J.-P. Shen and C. Song, Catal. Today, 77, 89 (2002). https://doi.org/10.1016/S0920-5861(02)00235-3
  6. Y. Hara, N. Minami, H. Matsumoto, and H. Itagaki, Appl. Catal. A: General, 332, 289 (2007). https://doi.org/10.1016/j.apcata.2007.08.030
  7. P. M. Urban, A. Funke, J. T. Műller, M. Himmen, and A. Docter, Appl. Catal. A: General, 221, 459 (2001). https://doi.org/10.1016/S0926-860X(01)00819-5
  8. T.-J. Huang and S.-Y. Jhao, Appl. Catal. A: General, 302, 325 (2006). https://doi.org/10.1016/j.apcata.2006.02.027
  9. S. J. Lee, J. H. Jun, S.-H. Lee, K. J. Yoon, T. H. Lim, S.-W. Nam, and S.-A. Hong, Appl. Catal. A: General, 230, 61 (2002). https://doi.org/10.1016/S0926-860X(01)00995-4
  10. T. Utaka, K. Sekizawa, and K. Eguchi, Appl. Catal. A: General, 194, 21 (2000). https://doi.org/10.1016/S0926-860X(99)00349-X
  11. S. Cimino, L. Lisi, R. Pirone, G. Russo, and M. Turco, Catal. Today, 59, 19 (2000). https://doi.org/10.1016/S0920-5861(00)00269-8
  12. A. J. Zarur and J. Y. Ying, Nature, 403, 66 (2000).
  13. D. P. Serrano, J. A. Botas, J. L. G. Fierro, R. Guil-Lopez, P. Pizarro, and G. Gomez, Fuel, 89, 1241 (2010). https://doi.org/10.1016/j.fuel.2009.11.030
  14. O.-Y Kwon, H.-S. Shin, and S.-W. Choi, Chem. Mater., 12, 1273 (2000). https://doi.org/10.1021/cm990531q
  15. O.-Y Kwon and S.-W. Choi, Bull. Korean Chem. Soc., 20, 69 (1999).
  16. K.-W. Park, J. H. Jung, H.-J. Seo, and O.-Y. Kwon, Micro and Meso. Mater., 121, 219 (2009). https://doi.org/10.1016/j.micromeso.2009.02.002
  17. F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva, T. Tabakova, L. Ilieva, and V. Iadakiev, Catal. Today, 75, 169 (2002). https://doi.org/10.1016/S0920-5861(02)00060-3
  18. V. R. Choudhary, S. Banerjee, and A. M. Rajput, Appl. Catal. A: General, 234, 259 (2002). https://doi.org/10.1016/S0926-860X(02)00232-6
  19. G. C. Bond, Heterogeneus Catalysis, 2nd ed., 12, Oxford, New York (1987).
  20. Z. X. Liu, Q. X. Bao, and N. J. Wu, J. Catal., 113, 45 (1988). https://doi.org/10.1016/0021-9517(88)90236-9
  21. A. Bueno-Lopez, K. Krishna, M. Makkee, and J. A. Moulijn, J. Catal., 230, 237 (2005). https://doi.org/10.1016/j.jcat.2004.11.027
  22. A. M. Efstathiou, D. Papageorgiou, and X. E. Verykios, J. Catal., 141, 612 (1993). https://doi.org/10.1006/jcat.1993.1168
  23. B. M. Reddy, B. Chowdhury, E. P. Reddy, and A. Fernandez, Appl. Catal. A: General, 213, 279 (2001). https://doi.org/10.1016/S0926-860X(00)00906-6
  24. A. M. Venezia, A. Rossi, D. Duca, A. Martorana, and G. Deganello, Appl. Catal. A: General, 125, 113 (1995). https://doi.org/10.1016/0926-860X(94)00286-X
  25. X. Li, Y. Zhang, and K. J. Smith, Appl. Catal. A: General, 264, 81 (2004). https://doi.org/10.1016/j.apcata.2003.12.031