녹색발광 6-알킬-3-크로몬알데히드(2,2-디알킬)하이드라존 유도체의 합성

Synthesis of 6-Alkyl-3-Chromonealdehyde(2,2-dialkyl)hydrazone Derivatives for Green Light Emitting Materials

  • 정평진 (단국대학교 신소재공학과) ;
  • 장홍준 (단국대학교 신소재공학과)
  • Chung, Pyung-Jin (Department of Materials Science and Engineering, Dankook University) ;
  • Chang, Hong-Joon (Department of Materials Science and Engineering, Dankook University)
  • 투고 : 2010.04.01
  • 심사 : 2010.05.17
  • 발행 : 2010.08.10

초록

본 연구는 유기발광디바이스용(OLED) 녹색발광재료인 6-알킬-3-크로몬알데히드(2,2-디알킬)하이드라존 유도체의 합성에 관한 것으로서, 유도체들은 탈수축합반응으로 합성되었다. 이들은 전자흡인성의 6-알킬-3-크로몬알데히드류와 전자공여성의 2,2-디알킬하이드라존류의 공액구조를 가지고 있다. 합성된 물질들은 각각 FT-IR, $^1H$-NMR 스펙트럼으로부터 그의 구조적 특성을 확인하였고, 융점, 수득률에 의하여 열적 안정성, 반응성을 확인하였으며, 여기스펙트럼과 발광스펙트럼으로부터 자외가시광과 발광특성을 확인하였다.

6-Alkyl-3-chromonealdehyde (2,2-dialkyl)hydrazone derivatives were synthesized by dehydration condensation. They are green-emitting materials for organic light emitting device (OLED) composed of electron acceptor of 6-alkyl-3-chromonealdehydes and electron donor of 2,2-dialkylhydrazones in a conjugated structure. The structural properties of reaction products were analyzed by FT-IR and $^1H$-NMR spectroscopy. The thermal stabilities and reactivities were measured by melting points and yields. The UV-visibles and PL properties were also determined by excitation spectra and emission spectra, respectively.

키워드

참고문헌

  1. T. W. Hagler, K. Pakbaz, K. Voss, and A. J. Heeger, Phys. Rev., B 44, 8652 (1992).
  2. M. Pope, H. P. Kallmann, and P. Magnante, J. Chem. Phys., 38, 2042 (1962).
  3. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 902 (1987).
  4. W. Helfrich and W. G. Schneider, Phy. Rev. Lett., 14, 229 (1965). https://doi.org/10.1103/PhysRevLett.14.229
  5. C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, JPN, J. Appl. Phys. 27, L713 (1988). https://doi.org/10.1143/JJAP.27.L713
  6. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burnm, and A. B. Holmes, Nature, 374, 539 (1990).
  7. J. Kido, H. Hayase, K. Hongawa, K. Nagai, and K. Okuyama, Appl. Phys. Lett., 65, 212 (1994).
  8. D. U. Kim and T. Tsutsui, J. Appl. Phys., 80, 4785 (1996). https://doi.org/10.1063/1.363420
  9. Z. Yang, I. Sokolik, and F. E. Karatz, Macromolecules, 26, 1188 (1993). https://doi.org/10.1021/ma00057a047
  10. X. B. Ding, Synthetic Matals, 142, 267 (2004). https://doi.org/10.1016/j.synthmet.2003.09.010
  11. C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys, 65, 3610 (1989). https://doi.org/10.1063/1.343409
  12. S. Saito, T. Tsutsui, M. Era, N. Takada, C. Adadhi, Y. Hamada, and T. Yakimoto, Proc. SPIE, 1910, 212 (1993).
  13. S. Tokito, T. Tsutui, and Y. Taga, J. Appl. Phys., 86, 2407 (1999). https://doi.org/10.1063/1.371068
  14. Y. Hamada, H. Kanno, T. Tsujioka, H. Takahashi, and T. Usuki, Appl. Phys. Lett., 75, 1682 (1999). https://doi.org/10.1063/1.124790
  15. C. Adachi, T. Tsutui, and S. Saito, Appl. Phys. Lett., 55, 1489 (1989). https://doi.org/10.1063/1.101586
  16. J. Kido, C. Ohtaki, K. Hongawa, K. Okuyama, and K. Nagai, JPN, J. Appl. Phys., 32, L917 (1993). https://doi.org/10.1143/JJAP.32.L917
  17. M. Carrard, S. G. Conto, L. S. Ahmed, D. Ades, and A. Siove, Thin Solid Films, 352, 189 (1999). https://doi.org/10.1016/S0040-6090(99)00322-3
  18. K. Yoshino, P. Love, M. Onoda, and R. Sugimoto, JPN, J. Appl. Phys., 27, L2388 (1998).
  19. S. Hayashi, H. Etoh, and S. Saito, JPN, J. Appl. Phys., 25. L773 (1986). https://doi.org/10.1143/JJAP.25.L773