Solubilization of Monochlorophenol Isomers by the Aqueous Solution of Tetradecyltrimethylammonium bromide

Tetradecyltrimethylammonium bromide 수용액에서 Monochlorophenol 이성질체들의 가용화에 대한 연구

  • Lee, Byung-Hwan (Department of Applied Chemical Engineering, Korea University of Technology and Education)
  • 이병환 (한국기술교육대학교 응용화학공학과)
  • Received : 2010.02.19
  • Accepted : 2010.03.17
  • Published : 2010.06.10

Abstract

The interaction of monochlorophenol isomers with the micellar system of TTAB (tetradecyltrimethylammonium bromide) was studied by the UV/Vis spectrophotometric method. The solubilization constants ($K_s$) of monochlorophenol isomers into this micellar system have been measured with the change of temperature. Various thermodynamic parameters (${\Delta}G^{\circ}_s$, ${\Delta}H^{\circ}_s$, and ${\Delta}S^{\circ}_s$) have been calculated and analyzed from the dependence of $K_s$ values on the temperature. The results show that the values of ${\Delta}G^{\circ}_s$ and ${\Delta}H^{\circ}_s$ are all negative but the values of ${\Delta}S^{\circ}_s$ are all positive for the solubilizations of all isomers within the measured temperature range. The effects of additives (n-butanol and NaCl) on the solubilization of monochlorophenol isomers by the same surfactant system have been also measured. There was a great change on the values of $K_s$ and CMC simultaneously with these additives. From these changes we can postulate the solubilization sites of each isomer in the micellar system of TTAB.

양이온 계면활성제인 TTAB (tetradecyltrimethylammonium bromide)의 수용액에서 monochlorophenol 이성질체들의 가용화현상을 UV/Vis 분광광도법을 이용하여 연구하였다. 온도의 변화에 따른 가용화상수값($K_s$)의 변화를 측정함으로써 열역학적 함수값(${\Delta}G^{\circ}_s$, ${\Delta}H^{\circ}_s$${\Delta}S^{\circ}_s$)들을 계산하고 분석하였으며, 그 결과 모든 이성질체들의 가용화에 대한 ${\Delta}G^{\circ}_s$${\Delta}H^{\circ}_s$ 값은 측정한 범위 내에서 음의 값을 그리고 ${\Delta}S^{\circ}_s$ 값은 모두 양의 값을 나타내었다. 또한 monochlorophenol 이성질체들의 가용화현상에 영향을 미치는 n-부탄올과 NaCl의 효과에 대하여 조사하였다. 이러한 첨가제는 $K_s$와 CMC 값을 동시에 큰 폭으로 변하게 하였으며, 이러한 변화로부터 각 이성질체들이 미셀 내에서 가용화되는 위치를 예측할 수 있었다.

Keywords

References

  1. B. H. Lee, S. D. Christian, E. E. Tucker, and J. F. Scamehorn, Langmuir, 7, 1332 (1991). https://doi.org/10.1021/la00055a007
  2. B. H. Lee, S. D. Christian, E. E. Tucker, and J. F. Scamehorn, J. Phys. Chem., 95, 360 (1991). https://doi.org/10.1021/j100154a065
  3. T. Chakraborty, I. Chakraborty, S. P. Moulik, and S. Ghosh, Langmuir, 25, 3062 (2009). https://doi.org/10.1021/la803797x
  4. R. Chaghi, L. C. de Menorval, C. Charnay, G. Derrin, and J. Zajac, Langmuir, 25, 4868 (2009). https://doi.org/10.1021/la803451q
  5. Y. Moroi, K. Mitsunobu, T. Morisue, Y. Kadobayashi, and M. Sakai, J. Phys. Chem., 9, 2372 (1995).
  6. S. Lu and P. Somasundaran, Langmuir, 23, 9960 (2007). https://doi.org/10.1021/la701009u
  7. M. Takeuchi and Y. Moroi, Langmuir, 11, 4719 (1995). https://doi.org/10.1021/la00012a023
  8. K. J. Rao and S. Paria, J. Phys. Chem. B, 113, 474 (2009). https://doi.org/10.1021/jp8071298
  9. S. K. Mehta, S. Chaudhary, R. Kumar, and K. K. Bhasin, J. Phys. Chem. B, 113, 7188 (2009). https://doi.org/10.1021/jp811310f
  10. A. Mahata, D. Sarkar, D. Bose, D. Ghosh, A. Girigoswami, P. Das, and N. Chattopadhyay, J. Phys. Chem. B, 113, 7517 (2009). https://doi.org/10.1021/jp900575e
  11. S. Nakamura, L. Kobayashi, R. Tanaka, T. I. Yamashita, K. Motomura, and Y. Moroi, Langmuir, 24, 15 (2008). https://doi.org/10.1021/la702820h
  12. M. Takeuchi and Y. Moroi, J. Colloid Interface Sci., 197, 230 (1998). https://doi.org/10.1006/jcis.1997.5287
  13. M. A. Rodrigues, E. O. Alonso, C. Yihwa, J. P. S. Farah, and F. H. Quina, Langmuir, 15, 6770 (1999). https://doi.org/10.1021/la990207+
  14. B. H. Lee, J. Kor. Chem. Soc., 44, 177 (2000).
  15. B. H. Lee, J. Kor. Chem. Soc., 45, 7 (2001).
  16. S. J. Bachofer and U. Simonis, Langmuir, 12, 1744 (1996). https://doi.org/10.1021/la950612a
  17. M. Sammalkorpi, M. Karttunen, and M. Haatoja, J. Phys. Chem. B, 113, 5863 (2009). https://doi.org/10.1021/jp901228v
  18. L. D. Leclercq, S. Giroux, B. Henry, and P. Rubini, Langmuir, 23, 10463 (2007). https://doi.org/10.1021/la7017488
  19. J. C. Burrows, J. Flynn, S. M. Kutay, T. G. Leriche, and D. G. Marangoni, Langmuir, 11, 3388 (1995). https://doi.org/10.1021/la00009a020
  20. J. Penfold, T. A. Green, G. C. Jones, G. Ford, C. Roberts, J. Hubbard, J. Petkov, R. K. Thomas, and I. Grillo, Langmuir, 24, 12209 (2008). https://doi.org/10.1021/la801662g
  21. A. Jusufi, A. P. Hynninen, M. Haataja, and A. Z. Panagiotopoulos, J. Phys. Chem. B, 113, 6314 (2009). https://doi.org/10.1021/jp901032g