Simulation Software for Instrument Placement on Stage Based on the Acoustic Properties of Concert Halls

연주홀 특성을 적용한 악기 무대 배치 시뮬레이션 소프트웨어 제작

  • Received : 2009.11.27
  • Accepted : 2010.03.05
  • Published : 2010.07.31

Abstract

In this paper, we present a software for placing instruments on stage based on the acoustic properties of the concert hall. In order to simulate the changes in sound depending on the positions of the instruments, we incorporated the idea of location-based reverberation effect which can be realized through the convolution of instrument sounds with the impulse responses from the respective instrument positions. And we developed a software with a real-time convolution engine which enables the user to conveniently simulate the resulting sound of various instrument placements. The software was tested with the impulse response data measured at two concert halls of the National Center for Korean Traditional Performing Arts and Korean traditional instrument sounds. Results of these experiments show that simulated reverberation effects properly represent the spatial placement of instruments on stage.

본 연구에서는 연주홀 특성에 맞는 무대 위에서의 악기 배치를 가상적으로 구현하는 문제를 다룬다. 악기 배치에 따른 소리의 변화를 예상하기 위한 모델로는 위치기반 잔향 효과 이론을 적용하였다. 이를 위하여 우선 무대 위 여러 지점에서 발생된 임펄스 응답을 측정한 후, 각 악기가 배치된 곳에 해당하는 임펄스 응답과 악기 음원을 컨볼루션하고 이를 무대 위 모든 악기에 적용하는 알고리즘을 구현하였다. 또한, 사용자가 무대에서의 악기 위치를 지정함에 따라 실시간 분할 컨볼루션 엔진을 기반으로 이를 시뮬레이션 할 수 있는 프로그램을 개발하였다. 국립국악원 내 공연장에서 측정된 임펄스 응답과 국악기 음원을 사용하여 본 프로그램의 효용성을 확인하기 위한 청취 평가 실험을 진행하였으며, 그 결과 시뮬레이션 된 잔향효과가 악기 무대 배치에 따른 위치의 느낌을 잘 나타냄을 확인할 수 있었다.

Keywords

References

  1. M. R. Schroeder, D. Gottlob, and K. F. Siebrasse, "Comparative Study of European Concert Halls: Correlation of Subjective Preference with Geometric and Acoustic Parameters," J. Acoust. Soc. Am, Vol.56, pp. 1195-1201, 1974. https://doi.org/10.1121/1.1903408
  2. V. L. Jordan, "A Group of Objective Acoustical Criteria for Concert Halls," Applied Acoustics, Vol.14, pp. 253-266, 1981. https://doi.org/10.1016/0003-682X(81)90021-9
  3. M. R. Schroeder, "Progress in architectural acoustics and artificial reverberation: Concert hall acoustics and number theory," J. Audio. Eng. Soc, Vol.32, pp. 194-203, 1984.
  4. L. L. Beranek, "Concert Hall Acoustics," J. Acoust. Soc. Am, Vol.92, pp. 1-39, 1992. https://doi.org/10.1121/1.404283
  5. 정대업, 최석원, "한국전통음악공연장의 건축 음향특성에 관한 연구 I," 대한건축학회 논문집, 제21권, 제3호, pp. 181-189, 2005.
  6. J. Y. Jeon and M. Barron, "Evalucation of Stage Acoustics in Seoul Arts Center Concert Hall by Measuring Stage Support," J. Acoust. Soc. Am, Vol.117, No.1, pp. 232-239, 2005. https://doi.org/10.1121/1.1829258
  7. K. K. Heinrich, "Auralization of Impulse Responses Modeled on the Basis of Ray-Tracing Results," J. Audio. Eng. Soc, Vol.41, pp. 876-880, 1993.
  8. A. J. Berkhout and D. de Vries, "Acoustic Holography for Sound Control," 86th Audio, Eng. Soc. Convention, preprint 2801, 1989.
  9. 임태성, 윤철환, 홍완표, 류대현, "ARM720T core를 이용한 실시간 입체음향 변환기 구현," 한국멀티미디어학회 추계학술발표논문집, pp. 421-424, 2002.
  10. JM. Jot, "Real-time Spatial Processing of Sounds for Music, Multimedia and Interactive Human Computer Interfaces," Multimedia Systems, Vol.7, pp. 55-69, 1999. https://doi.org/10.1007/s005300050111
  11. V. Pulkki, "Virtual Sound Source Positioning Using Vector Base Amplitude Panning," J. Audio Eng. Soc, Vol.45, pp. 456-466, 1997.
  12. W. D. Haines, J. R. Vernon, and R. B Dannenberg, "Placement of Sound Sources in the Stereo Field Using Measured Room Impulse Responses," CMMR 2007, pp. 276-287, 2008.
  13. Wikipedia, Convolution Reverb, http://en.wikipedia.org/ wiki/Convolution_reverb.
  14. Y. Li and P. F. Driessen, "Spatial Sound Rendering Using Measured Room Impulse Responses," IEEE International Symposium on Signal Processing and Information Technology, pp.432-437, 2006.
  15. A. Farina, "Simultaneous Measurement of Impulse Response and Distortion with a Swept-sine Technique," J. Audio. Eng. Soc, Vol.48, p. 350, 2000.
  16. A. Torger and A. Farina, "Real-time Partitioned Convolution for Ambiophonics Surround Sound," IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 195-198, 2001.
  17. J. O. Smith, Mathematics of the Discrete Fourier Transform (DFT) - with Audio Application Second Edition, W3KPublishing, 2007.
  18. Wikipedia, Impulseliesponse, http://en.wiki-pedia.org/wiki/Impulse.response.
  19. M. R. Schroeder and B. F. Logan, "Colorless artificial reverberation," IRE Transactions, vol.AU-9, pp. 209-214, 1961. https://doi.org/10.1109/TAU.1961.1166351
  20. J. Stautner and M. Puckette, "Designing Multi-channel Reverberators," Computer Music Journal, Vol.6, No.1, pp.52-65, 1982. https://doi.org/10.2307/3680358
  21. J. O. Smith, "A New Approach to Digital Reverberation Using Closed Waveguide Networks," Proc. 1985 ICMC, pp. 47-53, 1985.
  22. J. O. Smith, Physical Audio Signal Processing for Virtual Musical Instruments and Audio Effects, W3KPublishing, 2008.
  23. J. Edwards, "Acoustic Room Response Analysis," TechOnline, http://www.techonline.com/showArticle.jhtml?articlelD=192200393
  24. E. Berdahl and J. O. Smith, "Swept Sine Impulse Response Measurement," ConnexIons, 2008, http://cnx.org/content/m15945/latest/
  25. WG. Gardner, "Efficient Convolution without Input-output Delay," J. Audio. Eng. Soc, Vol. 43, pp. 127-136, 1995.
  26. M. Frigo and S. G. Johnson, "The Design and Implementation of FFTW3," Proceedings of the IEEE, Vol.93, No.2, pp. 216-231, 2005. https://doi.org/10.1109/JPROC.2004.840301