제주분지 제 5광구 탄성파자료의 중합전 역시간 구조보정

Prestack Reverse Time Migration for Seismic Reflection data in Block 5, Jeju Basin

  • 고진석 (조선대학교 공과대학 에너지자원공학과) ;
  • 장성형 (한국지질자원연구원 석유해저연구본부)
  • Ko, Chin-Surk (Chosun Univ., Energy & Resource Eng.) ;
  • Jang, Seong-Hyung (Korea Institute of Geoscience & Mineral Resources, Petroleum and Marine Division)
  • 투고 : 2010.07.01
  • 심사 : 2010.08.20
  • 발행 : 2010.08.28

초록

탄성파 심도영역 중합전 역시간 구조보정은 음원영역 파동외삽과 수진기영역 파동외삽의 상호상관으로 지층구조를 영상화하는 방법으로 암염돔 하부, 단층, 습곡, 심한 경사층 등 복잡한 층서구조를 영상화하는데 주로 이용된다. 여기에서는 한국지질자원연구원에서 개발된 중합전 심도영역 역시간 구조보정 기술을 국내 대륙붕 제주분지 제 5광구 탄성파 현장자료에 적용하여 음원번호 1280번 하부에 존재하는 향사 층서구조 영상을 향상시키고자 하였다. 음원모음 신호음을 향상시키기 위해 기본 자료처리를 실시하였고, 반복적으로 속도스펙트럼을 계산하는 방법으로 중합속도를 결정하여 속도모델을 구축하였다. 중합단면도상에 나타나는 향사구조는 산란파 영향으로 지층경계면의 연속성이 떨어져 보이지만 구조보정 적용 결과 탄성파 반사 에너지가 집중된 곳에서 향사구조 영상이 향상된 심도영역 지층단면도를 구할 수 있었다.

For imaging complex subsurface structures such as salt dome, faults, thrust belt, and folds, seismic prestack reverse-time migration in depth domain is widely used, which is performed by the cross-correlation of shot-domain wavefield extrapolation with receiver-domain wavefield extrapolation. We apply the prestack reverse-time migration, which had been developed at KIGAM, to the seismic field data set of Block 5 in Jeju basin of Korea continental shelf in order to improve subsurface syncline stratigraphy image of the deep structures under the shot point 8km at the surface. We performed basic data processing for improving S/N ratio in the shot gathers, and constructed a velocity model from stack velocity which was calculated by the iterative velocity spectrum. The syncline structure of the stack image appears as disconnected interfaces due to the diffractions, but the result of the prestack migration shows that the syncline image is improved as seismic energy is concentrated on the geological interfaces.

키워드

참고문헌

  1. Becv, D. (1997) Imaging complex structures with semirecursive Kirchhoff migration. Geophysics, v.62, p.577-588. https://doi.org/10.1190/1.1444167
  2. Bonomi, E., Brieger, L., Nardone C, and Pieroni, E., (1998) A scheme for high-performance echo reconstruction imaging. Computers in Physics, v.12, p.126- 132. https://doi.org/10.1063/1.168623
  3. Chung, T.J. et al. (2003) Evaluation of petroleum potential in offshore Korean. Korea Institute of Geoscience and Mineral Resources, KR-03-14.
  4. Claerbout, J. F. (1971) Toward a unified theory of reflector mapping. Geophysics, v.36, p.467-481. https://doi.org/10.1190/1.1440185
  5. Farmer, P., Zhou, Z.Z. and Jones, D. (2002) The role of reverse time migration in imaging and model estimation. The leading edge, v.21, p.1205-1209. https://doi.org/10.1190/1.1536135
  6. Gazdag, J. and Sguazzero, P. (1984) Migration of seismic data by phase shift plus interpolation. Geophysics, v.49, p.124-131. https://doi.org/10.1190/1.1441643
  7. Graziella, K.G.M., Lawton, D.C. and Cheadle, S. (2003) Integrated prestack depth migration of vertical seismic profile and surface seismic data from the Rocky Mountain Foothills of southern Alberta, Canada. Geophysics, v.68, p.1782-1791. https://doi.org/10.1190/1.1635031
  8. Hale, D. (1984) Dip-moveout by Fourier transform. Geophysics, v.49, p.741-757. https://doi.org/10.1190/1.1441702
  9. Hokstad, K., Mittet, R. and Landros M. (1998) Elastic reverse time migration of marine walkaway vertical seismic profiling data. Geophysics, v.63, p.1685-1695. https://doi.org/10.1190/1.1444464
  10. de Hoop, M.V., Le Rousseaua, J.H. and Wu, Ru-Shan, (2000) Generalization of the phase-screen approximation for the scattering of acoustic waves. Wave motion, v.31, p.43-70. https://doi.org/10.1016/S0165-2125(99)00026-8
  11. Jang, S., Shin, C.S., Yang, S.J. and Ko, J.S. (1997) Imaging subsurface using cross-correlation. Geosystem engineering, v.34, p.592-600.
  12. Jang, S., Suh, S.Y. and Ko, J.S. (2005) VSP modeling and prestack depth migration. Geosystem engineering, v.42, p.625-633.
  13. Kreyszig, E. (1978) Introductory functional analysis with application. John Willy & Sons.
  14. Nichols, D.E. (1996) Maximum energy travel times calculated in the seismic frequency band. Geophysics, v.61, p.253-263. https://doi.org/10.1190/1.1443946
  15. Marfurt, K.J. (1978) Elastic wave equation migrationinversion. Ph. D dissertation, Columbia University Graduate School of Arts and Science.
  16. Shin, C., Jang, S. and Min, D. (2001) Improved amplitude preservation for prestack depth migration by inverse scattering theory. Geophysical Prospecting, v.49, p.592-606. https://doi.org/10.1046/j.1365-2478.2001.00279.x
  17. Stoffa, P.L., Fokkema, J.T., de Luna Freire, R.M. and Kessinger, W.P. (1990) Split-step Fourier migration. Geophysics, v.55, p.410-421. https://doi.org/10.1190/1.1442850
  18. Stolt, R.H. (1978) Migration by Fourier transform. Geophysics, v.43, p.23-48. https://doi.org/10.1190/1.1440826
  19. Suh, S.Y., Chung, B.H. and Jang, S. (1999) An iterative, interactive and unified Seismic Velocity Analysis. Mulli-tamsa, v.2, p.26-32.
  20. Tarantola, A. (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics, v.49, p.1251-1266.
  21. Yilmaz, O. (1987) Seismic Data Processing, SEG.
  22. Yoon, K.J, Jang, M.K, Suh, J.H., Shin, C.S., Yang, S.J., Ko, S.W., Yoo, H.S. and Jang J.K. (2000) Prestack reverse time depth migration using monochromatic one-way wave equation. Mulli-tamsa, v.3, p70-75.