DOI QR코드

DOI QR Code

Evaluation of Dynamic Group Pile Effect in Sand by 1 g Shaking Table Tests

1g 진동대 실험을 이용한 사질토 지반에서의 동적 군말뚝 효과 분석

  • 양의규 (GS 건설 토목기술설계팀) ;
  • 최정인 (서울대학교 건설환경공학부) ;
  • 한진태 (서울대학교 건설환경공학부) ;
  • 김명모 (서울대학교 건설환경공학부)
  • Received : 2010.06.18
  • Accepted : 2010.07.23
  • Published : 2010.08.31

Abstract

In this study, 1 g shaking table group pile tests were performed for various conditions of subgrade and pile spacing. The pile spacing was changed from three to seven times of pile diameters. It could be confirmed that the dynamic p-y curves for the group pile observed as the results of a series of shaking table tests show difference according to the pile spacing, the pile location within the pile group, the relative density of subgrade and the excess pore pressure during earthquake. The dynamic p-multipliers were calculated by comparing the dynamic p-y backbone curves of a single pile suggested by Yang (2009) and dynamic p-y curves for the group pile. Dynamic p-multiplier values overall increase as the relative density of subgrade and amplitude of input acceleration increase. The dynamic group pile effect was neglected, if the pile spacing was seven times as large as pile diameters. It was found that the exisiting p-multiplier values suggested by various researchers for the static and dynamic loading, and the values recommended by globally used specifications show difference with the test results by up to 0.7 (approximately 70%). Therefore, the dynamic p-multipliers were newly suggested according to the pile spacing and the relative density of subgrade using the test results.

본 연구에서는 다양한 상대밀도의 건조, 포화 사질토 지반을 조성하고, 군말뚝의 중심 간격을 말뚝 지름의 3배, 5배, 7배로 조정하며 1g 진동대 실험을 수행하였다. 실험으로 얻은 동적 p-y 곡선을 분석하여, 말뚝중심간 간격, 군말뚝 내말뚝의 위치, 지반의 상대밀도, 그리고 진동 중 발생하는 과잉간극수압에 따라 군말뚝의 동적 p-y 곡선이 달라지는 것을 확인하였다. Yang 등(2009)이 제시한 단말뚝의 동적 p-y 중추곡선과 군말뚝의 동적 p-y 곡선을 비교하여 동적 p-승수를 산정해본 결과, 입력가속도 진폭과 지반의 상대밀도가 증가할수록 p-승수의 값이 증가하였으며, 말뚝 중심 간격이 말뚝지름의 7배가 되었을 경우 군말뚝 효과가 사라지는 것으로 나타났다. 기존의 연구자들이 제안한 정적, 동적 p-승수 값들과 우리나라 기준서에서 제안하고 있는 p-승수 값들은 살험값과 비교하여 최대 0.7(약 70%) 정도까지 차이를 보였으며 이에 본 연구에서는 말뚝 중심 간격과 지반의 상대밀도를 기준으로 동적 p-승수 값을 새롭게 제안하였다.

Keywords

References

  1. 김성렬, 김성환, 정충기, 김명모 (2002), "실험 p-y 곡선을 이용한 동적 군말뚝 효과 분석", 한국지반공학회 논문집, 제 13권, 제 1호, pp.127-132.
  2. 도로교설계기준 (2001), 사단법인 대한토목학회.
  3. 양의규, 유민택, 김현욱, 김명모 (2009), "포화 사질토 지반에서의 동적 p-y 중추곡선", 한국지반공학회 논문집, 제 25권, 제 11호, pp.27-38.
  4. 항만 및 어항시설의 내진설계표준서 (1999), 해양수산부.
  5. ASSHTO. (2000), Bridge design specifications, Washington, D.C.
  6. Canadian Geotechnical Society (1992), Canadian foundation engineering manual, 3rd Ed., BiTech Publishers, Ltd., Vancouver, B.C., Canada.
  7. Dou, H., and Byrne, P.M. (1996), "Dynamic response of single piles and soil-pile interaction", Canadian Geotechnical Journal, Vol.33, No.1, pp.80-96. https://doi.org/10.1139/t96-025
  8. El Naggar, M. H., and M. Novak. (1996) "Nonlinear Analysis for Dynamic Lateral Pile Response", Journal of Soil Dynamics and Earthquake Engineering, Vol.15, No.4, pp.233-244. https://doi.org/10.1016/0267-7261(95)00049-6
  9. Iai, S. and Sugano, T. (1999), "Soil-structure interaction studies through shaking table tests", Proc. of the Second International Conference on Earthquake Geotechnical Engineering, P.S. Seco e Pinto ed., Lisbon, Portugal, Vol.1, pp.365-370.
  10. Liu, L. and Dobry, R. (1995), "Effect of liquefaction on lateral response of piles by centrifuge model tests", National Center for Earthquake Engineering Research (NCEER) Bulletin, Vol.9, No.1, pp.7-11.
  11. National Cooperative Highway Research Program. (NCHRP) (2001), Static and Dynamic Lateral Loading of Pile Groups, NCHRP Report 461, Transportation Research Board - National Research Council., pp.13-21.
  12. PoLam, I., Kapuskar, M., and Chaudhuri D. (1998), Modeling of Pile Footings and Drilled Shafts for Seismic Design, Technical Report MCEER-98-0018. Multidisciplinary Center for Earthquake Engineering Research, State University of New York at Buffalo.
  13. Reese, L.C., Wang, S.T., Arrellaga, J.A., and Hendrix, J. (1996), GROUP version 4.0 for Windows users' manual, Ensoft, Ine. Austin, Tex.
  14. Reese, L.C., and Van Impe, W.F. (2001), Single piles and pile groups under lateral loading, Balkema, Rotterdam, The Netherlands.
  15. Rollins, K. M., Kris, T. P. and Thomas, J. W. (1998), "Lateral load behavior of full-scale pile group in clay", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 124 (6), 468-478. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(468)
  16. Rollins, K. M., Gerber, T. M., Lane, J. D. (2005), "Lateral resistance of full-scale pile group in liquefied sand", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 131 (1), 115-125. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:1(115)
  17. Rollins, K.M., Olsen, K.G., Jensen, D.H., Garrett, B.H., Olsen, R.J., and Egbert, J.J. (2006), "Pile spacing effects on lateral pile group behavior:Analysis", Journal of geotechnical and geoenvironmental engineering, Vol.132, No.10, pp.1272-1283. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1272)
  18. Suzuki, H., Tokimatsu, K. and Ozawa, G. (2006), "Estimation of group pile effects in non-liquefied and liquefied ground based on centrifuge model tests", Proceedings of the 8th U.S. National Conference on Earthquake Engineering, San Francisco, CD-Rom.
  19. Suzuki, Y. and Adachi, N. (2003), "Relation between subgrade reaction and displacement of model pile group based on horizontal loading tests", Journal of Structural and Construction Engineering, AIJ, 570, 115-122 (in Japanese).
  20. Ting, J.M., Kauffman, C.R., and Lovicsek, M. (1987), "Centrifuge static and dynamic lateral pile behavior", Canadian Geotechnical Journal, Vol.24, pp.198-207. https://doi.org/10.1139/t87-025
  21. Uchida, A., Hamada, J., Tsuchiya, T., Yamashita, K. and Kakurai, M. (2003), "Lateral loading tests on a model pile group in liquefied soil using large-scale laminar shear box", Journal of Structural and Construction Engineering, AIJ, 572, pp. 117-122.
  22. US Army. (1993), Design of pile foundations, Technical Engineering and Design Guides No. 1, U.S. Army Corps of Engineers, Washington, D.C.
  23. US Navy, (1982), Foundations and earth structures-design manual 7.2, VAVFAC DM-7.2., Naval Facilities Engineering Command, Dept. of the Navy, Washington, D.C.
  24. Washington State Department of Transportation (WSDOT). (2002), Bridge design manual, Chap. 9, Olympia, Wash., 9.9-26.
  25. Yang, E.K., Jeong, S.S., Kim. J.H., Kim, M.M. (2009), "Dynamic p-y Backbone Curves from 1g Shaking Table Tests", Proceeding of 88th Transportation Research Board Annual Meeting, Washington, D.C., CD-Rom.