DOI QR코드

DOI QR Code

Anti-obesity Effects of Tae-Um-Jo-Wee-Tang and Do-Dam-Tang in Female Rats with Diet-induced Obesity

고지방식이로 비만을 유도한 암컷 백서에서 태음조위탕과 도담탕의 항비만 효과 및 기전

  • Park, Sun-Min (Department of Food and Nutrition, College of Natural Science, Basic Science Institutes, Hoseo University) ;
  • Ahn, Il-Sung (Department of Food and Nutrition, College of Natural Science, Basic Science Institutes, Hoseo University) ;
  • Kim, Da-Sol (Department of Food and Nutrition, College of Natural Science, Basic Science Institutes, Hoseo University) ;
  • Kang, Sun-A (Department of Food and Nutrition, College of Natural Science, Basic Science Institutes, Hoseo University) ;
  • Kwon, Dae-Young (Emerging Innovative Technology Research Division, Korean Food Research Institutes) ;
  • Yang, Hye-Jeong (Emerging Innovative Technology Research Division, Korean Food Research Institutes)
  • 박선민 (호서대학교 자연과학대학 기초과학연구소 식품영양학과) ;
  • 안일성 (호서대학교 자연과학대학 기초과학연구소 식품영양학과) ;
  • 김다솔 (호서대학교 자연과학대학 기초과학연구소 식품영양학과) ;
  • 강선아 (호서대학교 자연과학대학 기초과학연구소 식품영양학과) ;
  • 권대영 (한국식품연구원, 미래전략가술연구본부, 바이오제론연구단) ;
  • 양혜정 (한국식품연구원, 미래전략가술연구본부, 바이오제론연구단)
  • Received : 2009.12.28
  • Accepted : 2010.01.13
  • Published : 2010.03.31

Abstract

Tae-Um-Jo-wee-Tang (TUJWT) and Do-Dam-Tang (DDT) have been used as an anti-obesity herbal medicine but their effect and mechanism of action have not been studied. We investigated the effects of TUJWT and DDT on energy and glucose homeostasis using Sprague Dawley female rats with diet-induced obesity. The mechanisms of action of TUJWT and DDT were studied whether they had anti-obesity effects. Rats fed a high-fat diet were divided into 3 groups: rats in each group received 2 g water extracts of modified TUJWT and DDT, or 2 g cellulose per kg body weight (a negative control) on a daily basis. A further group was fed a low-fat diet as a positive control. We found that DDT significantly decreased body weight and body fat (mesenteric fat and retroperitoneal fat) more than the control. This decrease was due to the reduction in energy intake but no changes of energy expenditure. However, DDT increased fat oxidation as a major energy source than the control. In addition, modified TUJWT and DDT improved glucose tolerance without changing serum insulin levels during an oral glucose tolerance test. In conclusion, DDT have a better anti-obesity effect than TUJWT by decreasing energy intake in female rats with diet-induced obesity. It also improves glucose tolerance.

본 연구에서는 고지방식이로 비만을 유도한 암컷 백서에게 태음조위탕과 도담탕을 8주 동안 경구 투여하였을 때 에너지와 포도당 대사에 미치는 영향을 조사하였다. 태음조위탕은 체중과 복부지방에 지방 축적을 나타내는 mesenteric fat과 retroperitoneal fat 양을 감소시키는 경향은 있었지만 통계적으로 유의한 차이를 나타내지는 않았다. 태음조위탕은 대조군에 비해 식이섭취량을 감소시키는 경향을 나타내었다. 반면에 도담탕은 대조군에 비해 체중과 복부지방을 통계적으로 유의하게 감소시켰으며 이것은 식이 섭취량의 감소에 기인하였다. 에너지 소모량은 고지방식이군과 저지방식이군에 차이가 없었고 태음조위탕과 도담탕도 에너지 소모량에 영향을 미치지 않았다. 그러나 에너지원으로 지방을 사용하는 것은 도담탕이 대조군에 비해 높았다. 고지방식이에서는 체내 인슐린 저항성을 나타내는 $HOMA_{IR}$의 값이 높았고, 도담탕은 이것을 통계적으로 유의적으로 낮추었다. 또한, 간에 저장된 글리코겐양도 도담탕을 섭취한 백서에서 가장 많았고, 반면에 간에 저장된 중성 지방 함량은 가장 낮았다. 결론적으로 고지방을 장기간 투여한 암컷 백서에서 체내 에너지와 포도당 대사에 장애가 나타났으며, 태음조위탕과 도담탕이 모두 이러한 장애를 해소하는 경향이 있었으나 도담탕이 효과적으로 에너지와 포도당 대사를 정상화시켰다. 그러므로 비만인 사람에게서 효과적으로 에너지와 포도당 대사를 정상화시킬 수 있는 지에 대한 인체 실험을 하는 것이 필요할 것으로 사료된다.

Keywords

References

  1. Badman MK and Flier JS (2007) The adipocyte as an active participant in energy balance and metabolism. Gastroenterology 132, 2103-2115. https://doi.org/10.1053/j.gastro.2007.03.058
  2. Bjorbaek C and Kahn BB (2004) Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res 59, 305-331. https://doi.org/10.1210/rp.59.1.305
  3. Bonner RF and Nossal R (1990) Principles of laser-doppler flowmetry. In: Laser-doppler blood flowmetry. Shepherd AP. Oberg PA. eds. Kluwer Academic, Boston, 17-45.
  4. Diepvens K, Westerterp KR, and Westerterp-Plantenga MS (2007) Obesity and thermogenesis related to the consumption of caffeine, ephedrine, capsaicin, and green tea. Am J Physiol Regul Integr Comp Physiol 292, R77-R85. https://doi.org/10.1152/ajpregu.00832.2005
  5. Dodt C, Lonnroth P, Wellhoner JP, Fehm HL, and Elam M (2003) Sympathetic control of white adipose tissue in lean and obese humans. Acta Physiol Scand 177, 351-357. https://doi.org/10.1046/j.1365-201X.2003.01077.x
  6. Garruti G, Cotecchia S, Giampetruzzi F, Giorgino F, and Giorgino R (2008) Neuroendocrine deregulation of food intake, adipose tissue and the gastrointestinal system in obesity and metabolic syndrome. J Gastrointestin Liver Dis 17, 193-198.
  7. Gurevich-Panigrahi T, Panigrahi S, Wiechec E, and Los M (2009) Obesity: pathophysiology and clinical management. Curr Med Chem 16, 506-521. https://doi.org/10.2174/092986709787315568
  8. Hioki C, Yoshimoto K, and Yoshida T (2004) Efficacy of bofutsusho-san, an oriental herbal medicine, in obese Japanese women with impaired glucose tolerance. Clin Exp Pharmacol Physiol 31, 614-619. https://doi.org/10.1111/j.1440-1681.2004.04056.x
  9. Hughes TA, Stentz F, Gettys T, and Smith SR (2006) Combining beta-adrenergic and peroxisome proliferator-activated receptor gamma stimulation improves lipoprotein composition in healthy moderately obese subjects. Metabolism 55, 26-34. https://doi.org/10.1016/j.metabol.2005.06.022
  10. Jeon BH, Lee GJ, and Kim KY (1996) Effects of Taeyeumjoweetang on the obesity of mouse and induced adipocyte 3T3-L1. Kor J Oriental Path 10, 88-98.
  11. Jeong HW and Kim HS (2000) Effects of Dodamtang on the cerebral blood flow improvement and action mechanism in rats. Kor J Oriental Path 14, 233-244.
  12. Kim SO, Yun SJ, Jung B, Lee EH, Hahm DH, Shim I, and Lee HJ (2004) Hypolipidemic effects of crude extract of adlay seed (Coix lacryma-jobi var. mayuen) in obesity rat fed high fat diet: relations of TNF-alpha and leptin mRNA expressions and serum lipid levels. Life Sci 75, 1391-1404. https://doi.org/10.1016/j.lfs.2004.03.006
  13. Kim TS and Ahn KS (1988) Effect of Dangkwisoosna and Dodamtang on the intravascular coagulation induced by endotoxin in rats. Kor J Oriental Path 3, 91-98.
  14. Korean Nutrition Society (2005) Dietary reference intakes for Koreans. Seoul.
  15. Lee YE, Park JE, Hwang JY, and Kim WY (2009) Comparison of health risks according to the obesity types based upon BMI and waist circumference in Korean adults: The 1998-2005 Korean National Health and Nutrition Examination Surveys. Kor J Nutri 42, 631-638. https://doi.org/10.4163/kjn.2009.42.7.631
  16. Lusk G (1924) Analysis of the oxidation of mixtures of carbohydrate and fat. J Biol Chem 59, 41.
  17. Ministry of Health & Welfare (2002) Report on the 2001 National Health and Nutrition Survey. Seoul.
  18. Morgan DA, Thedens DR, Weiss R, and Rahmouni K (2008) Mechanisms mediating renal sympathetic activation to leptin in obesity. Am J Physiol Regul Integr Comp Physiol 295, R1730-R1736. https://doi.org/10.1152/ajpregu.90324.2008
  19. Niwa H, Ogawa Y, Kido Y, Abe Y, Kobayashi M, Mori T, and Tanaka T (1989) The rate of lipid oxidation in septic rat models. Jpn J Surg 19, 439-445. https://doi.org/10.1007/BF02471625
  20. Park S, Hong SM, and Ahn IS (2009) Long-term ICV infusion of insulin, but not glucose, modulates body weight and hepatic insulin sensitivity through modifying hypothalamic insulin signaling pathway in type 2 diabetic rats. Neuroendocrinology 89, 387-399. https://doi.org/10.1159/000197974
  21. Park S, Hong SM, Sung SR, and Jung HK (2008) Long-term effects of central leptin and resistin on body weight, insulin resistance, and $\beta$-cell function and mass by the modulation of hypothalamic leptin and insulin signaling. Endocrinology 149, 445-454. https://doi.org/10.1210/en.2007-0754
  22. Pocai A, Lam TK, Obici S, Gutierrez-Juarez R, Muse ED, Arduini A, and Rossetti L (2006) Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. J Clin Invest 116, 1081-1091. https://doi.org/10.1172/JCI26640
  23. Richard D (2007) Energy expenditure: a critical determinant of energy balance with key hypothalamic controls. Minerva Endocrinol 32, 173-183.
  24. Sahu A (2004) A hypothalamic role in energy balance with special emphasis on leptin. Endocrinology 145, 2613-2620. https://doi.org/10.1210/en.2004-0032
  25. Scarpace PJ and Zhang Y (2009) Leptin resistance: a prediposing factor for diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 296, R493-R500. https://doi.org/10.1152/ajpregu.90669.2008
  26. Taubes G (2000) Weight increases worldwide? Science 280, 1368.
  27. Vasques CA, Rossetto S, Halmenschlager G, Linden R, Heckler E, Fernandez MS, and Alonso JL (2008) Evaluation of the pharmacotherapeutic efficacy of Garcinia cambogia plus Amorphophallus konjac for the treatment of obesity. Phytother Res 22, 1135-1140. https://doi.org/10.1002/ptr.2323
  28. Yoon JH, Ryu SH, Chung KH, Choi DG, Jeong IG, Lee HH, Kim JO, and Lim EM (2002) Effects of 12 Weeks Taeyeumjoweetang administration on enzymes and fat accumulation in rat liver cells. Sports Sci 11, 53-65.

Cited by

  1. Efficacy and Safety of Taeeumjowi-tang in Obese Korean Adults: A Double-Blind, Randomized, and Placebo-Controlled Pilot Trial vol.2013, pp.1741-4288, 2013, https://doi.org/10.1155/2013/498935
  2. Metabolic Effect of an Oriental Herbal Medicine on Obesity and Its Comorbidities with Transcriptional Responses in Diet-Induced Obese Mice vol.18, pp.4, 2017, https://doi.org/10.3390/ijms18040747
  3. in Gambihwan Attenuates Obesity and Metabolic Syndrome in High-Fat Diet–Induced Obese Mice vol.2018, pp.1741-4288, 2018, https://doi.org/10.1155/2018/5614091
  4. A pilot study to evaluate the effect of Taeumjowi-tang on obesity in Korean adults: study protocol for a randomised, double-blind, placebo-controlled, multicentre trial vol.13, pp.1, 2012, https://doi.org/10.1186/1745-6215-13-33
  5. 상엽(桑葉)이 비만 유발 생쥐의 인슐린 저항성 및 지방세포 염증에 미치는 영향 vol.37, pp.4, 2010, https://doi.org/10.22246/jikm.2016.37.4.609
  6. 고지방식이로 유도된 비만 생쥐모델에서 열다한소탕의 항비만효과 vol.29, pp.2, 2010, https://doi.org/10.7730/jscm.2017.29.2.154
  7. 고중성지방혈증에 대한 단기 한약 투약 경과 : 증례보고 vol.40, pp.3, 2019, https://doi.org/10.22246/jikm.2019.40.3.517