남성과 여성에서 XIST 유전자의 후성학적 비교 연구

Epigenetic Study of XIST Gene from Female and Male Cells by Pyrosequencing

  • Kim, Hwan-Hee (Functional Genomics Lab, CHA Stem Cell Research Institute, School of Medicine, CHA University) ;
  • Yun, Yeo-Jin (Functional Genomics Lab, CHA Stem Cell Research Institute, School of Medicine, CHA University) ;
  • Song, Min-Ae (Functional Genomics Lab, CHA Stem Cell Research Institute, School of Medicine, CHA University) ;
  • Lee, Su-Man (Functional Genomics Lab, CHA Stem Cell Research Institute, School of Medicine, CHA University)
  • 발행 : 2010.03.31

초록

목 적: X 염색체 불활성화는 여성과 남성 사이에 X 염색체의 유전자 발현 유지를 위해 여성의 X 염색체 중 하나가 불활성화 되는 현상이다. 이러한 X 염색체 불활성화는 해독되지 않는 XIST 유전자에 의해 조절된다. XIST 유전자는 오직 불활성화된 X 염색체 에서만 발현되고, 활성화된 X 염색체 에서는 발현되지 않는다. 따라서 체세포에서 활성화된 X 염색체의 XIST 유전자는 promoter 부분이 메틸화 되어있고, 불활성화된 X 염색체에서는 메틸화가 거의 되어 있지 않다. 연구방법: 본 연구에서는 정상 여성과 정상 남성의 XIST 유전자의 promoter와 5'-end 지역의 메틸화 차이를 측정하기 위해 정상여성과 남성의 혈액에서 DNA를 추출하여 파이로시퀀싱 (Pyrosequencing) 방법을 통해 XIST 유전자의 총 8부분의 CpG 영역 (-1696, -1679, -1475, -1473, -1469, +947, +956, +971)을 분석하였다. 결 과: 총 8부분의 CpG 영역을 분석한 결과, promoter 부분인 CpG 1-5 영역 (-1696, -1679, -1475, -1473, -1469)에서는 여성과 남성의 메틸화 정도에 차이가 없었다. 그러나 5'-end 부분인 CpG6-8 영역 (+947, +956, +971)에서는 여성이 45.2% 49.9% 44.2%, 남성이 90.6%, 96.7%, 87.8%으로 메틸화 정도가 차이를 나타냈다. 결 론: 따라서 본 연구에 사용한 방법은 XIST 유전자의 메틸화 패턴의 차이를 기존의 방법보다 신속하고 정확하게 분석할 수 있다는 장점이 있기 때문에 유용하게 사용될 수 있을 것이다.

Objective: X inactivation is the silencing one of the two X chromosomes in female mammals for gene dosage on the X-chromosome between female and male. X inactivation is controlled by X inactive-specific transcript (XIST) gene, untranslated RNA. XIST is expressed only from the inactive X (Xi), not expressed from the active X (Xa). The Xist promoter is methylated on the silent Xist allele on the Xa in somatic cells, and less methylated on the Xist-expressing Xi. We investigated the difference of XIST methylation pattern of the promoter and 5'-region of XIST from male (XY) and female (XX) subjects. Methods: The direct quantification of XIST methylation is required for clinical application of normal XX and XY blood. Methylation percentage of eight CpG sites (-1696, -1679, -1475, -1473, -1469, +947, +956, +971) of XIST gene were diagnosed by pyrosequencing. Results: We directly quantitated the methylation percentage of the promoter and 5'-end of XIST by pyrosequencing. The average methylation percentages at CpG6-8 sites (+947, +956, +971) were 45.2% at CpG6, 49.9% at CpG7, and 44.2% at CpG8 from normal female and normal male were 90.6%, 96.7%, 87.8%, respectively. Nether CpG 1-5sites (-1696, -1679, -1475, -1473, -1469) had any effect on XX and XY. Conclusion: This method is sensitive for quantifying the small percentage change in the methylation status of XIST, and may be used for diagnosis.

키워드

참고문헌

  1. Lyon MF. Gene action in the x-chromosome of the mouse (mus musculus l.). Nature 1961; 190: 372-3. https://doi.org/10.1038/190372a0
  2. Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J, et al. The human xist gene: Analysis of a 17 kb inactive x-specific rna that contains conserved repeats and is highly localized within the nucleus. Cell 1992; 71: 527-42. https://doi.org/10.1016/0092-8674(92)90520-M
  3. Spatz A, Borg C, Feunteun J. X-chromosome genetics and human cancer. Nat Rev Cancer 2004; 4: 617-29. https://doi.org/10.1038/nrc1413
  4. Heard E, Disteche CM. Dosage compensation in mammals: Fine-tuning the expression of the x chromosome. Genes Dev 2006; 20: 1848-67. https://doi.org/10.1101/gad.1422906
  5. Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B. Xist rna and the mechanism of x chromosome inactivation. Annu Rev Genet 2002; 36: 233-78. https://doi.org/10.1146/annurev.genet.36.042902.092433
  6. Beard C, Li E, Jaenisch R. Loss of methylation activates xist in somatic but not in embryonic cells. Genes Dev 1995; 9: 2325-34.
  7. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific pcr: A novel pcr assay for methylation status of cpg islands. Proc Natl Acad Sci U S A 1996; 93: 9821-6. https://doi.org/10.1073/pnas.93.18.9821
  8. Heard E. Recent advances in x-chromosome inactivation. Curr Opin Cell Biol 2004; 16: 247-55. https://doi.org/10.1016/j.ceb.2004.03.005
  9. Turner JM, Mahadevaiah SK, Elliott DJ, Garchon HJ, Pehrson JR, Jaenisch R, et al. Meiotic sex chromosome inactivation in male mice with targeted disruptions of xist. J Cell Sci 2002; 115: 4097-105. https://doi.org/10.1242/jcs.00111
  10. Yu-Mi Jeong JHP, Sook-Hwan Lee, Tae-Gyu Chung, Yong Sung Kim, Nam-Soon Kim et al. The study of x chromosome inactivartion mechanism in klinefelter's syndrome by cdna microarray experiment. Genomics & informatics 2004; 2(1): 30-5.
  11. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 1992; 89: 1827-31. https://doi.org/10.1073/pnas.89.5.1827
  12. Clark SJ, Harrison J, Paul CL, Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res 1994; 22: 2990-7. https://doi.org/10.1093/nar/22.15.2990
  13. Schumacher A, Kapranov P, Kaminsky Z, Flanagan J, Assadzadeh A, Yau P, et al. Microarray-based DNA methylation profiling: Technology and applications. Nucleic Acids Res 2006; 34: 528-42. https://doi.org/10.1093/nar/gkj461
  14. Dupont JM, Tost J, Jammes H, Gut IG. De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem 2004; 333: 119-27. https://doi.org/10.1016/j.ab.2004.05.007
  15. Tost J, Gut IG. DNA methylation analysis by pyrosequencing. Nat Protoc 2007; 2: 2265-75. https://doi.org/10.1038/nprot.2007.314
  16. Ronaghi M, Nygren M, Lundeberg J, Nyren P. Analyses of secondary structures in DNA by pyrosequencing. Anal Biochem 1999; 267: 65-71. https://doi.org/10.1006/abio.1998.2978
  17. Reed K, Poulin ML, Yan L, Parissenti AM. Comparison of bisulfite sequencing pcr with pyrosequencing for measuring differences in DNA methylation. Anal Biochem 397: 96-106.
  18. Camargo M, Wang N. Cytogenetic evidence for the absence of an inactivated x chromosome in a human female (xx) breast carcinoma cell line. Hum Genet 1980; 55: 81-5. https://doi.org/10.1007/BF00329131
  19. Dutrillaux B, Muleris M, Seureau MG. Imbalance of sex chromosomes, with gain of early-replicating x, in human solid tumors. Int J Cancer 1986; 38: 475-9. https://doi.org/10.1002/ijc.2910380404
  20. Wang N, Cedrone E, Skuse GR, Insel R, Dry J. Two identical active x chromosomes in human mammary carcinoma cells. Cancer Genet Cytogenet 1990; 46: 271-80. https://doi.org/10.1016/0165-4608(90)90112-N
  21. Teixeira MR, Pandis N, Dietrich CU, Reed W, Andersen J, Qvist H, et al. Chromosome banding analysis of gynecomastias and breast carcinomas in men. Genes Chromosomes Cancer 1998; 23: 16-20. https://doi.org/10.1002/(SICI)1098-2264(199809)23:1<16::AID-GCC3>3.0.CO;2-9
  22. Rudas M, Schmidinger M, Wenzel C, Okamoto I, Budinsky A, Fazeny B, et al. Karyotypic findings in two cases of male breast cancer. Cancer Genet Cytogenet 2000; 121: 190-3. https://doi.org/10.1016/S0165-4608(00)00254-5
  23. Laner T, Schulz WA, Engers R, Muller M, Florl AR. Hypomethylation of the xist gene promoter in prostate cancer. Oncol Res 2005; 15: 257-64. https://doi.org/10.3727/096504005776404607
  24. Oktem O, Paduch DA, Xu K, Mielnik A, Oktay K. Normal female phenotype and ovarian development despite the ovarian expression of the sex-determining region of y chromosome (sry) in a 46,xx/69,xxy diploid/triploid mosaic child conceived after in vitro fertilization-intracytoplasmic sperm injection. J Clin Endocrinol Metab 2007; 92: 1008-14. https://doi.org/10.1210/jc.2006-1963