Epigenetic Study of XIST Gene from Female and Male Cells by Pyrosequencing

남성과 여성에서 XIST 유전자의 후성학적 비교 연구

  • Kim, Hwan-Hee (Functional Genomics Lab, CHA Stem Cell Research Institute, School of Medicine, CHA University) ;
  • Yun, Yeo-Jin (Functional Genomics Lab, CHA Stem Cell Research Institute, School of Medicine, CHA University) ;
  • Song, Min-Ae (Functional Genomics Lab, CHA Stem Cell Research Institute, School of Medicine, CHA University) ;
  • Lee, Su-Man (Functional Genomics Lab, CHA Stem Cell Research Institute, School of Medicine, CHA University)
  • Published : 2010.03.31

Abstract

Objective: X inactivation is the silencing one of the two X chromosomes in female mammals for gene dosage on the X-chromosome between female and male. X inactivation is controlled by X inactive-specific transcript (XIST) gene, untranslated RNA. XIST is expressed only from the inactive X (Xi), not expressed from the active X (Xa). The Xist promoter is methylated on the silent Xist allele on the Xa in somatic cells, and less methylated on the Xist-expressing Xi. We investigated the difference of XIST methylation pattern of the promoter and 5'-region of XIST from male (XY) and female (XX) subjects. Methods: The direct quantification of XIST methylation is required for clinical application of normal XX and XY blood. Methylation percentage of eight CpG sites (-1696, -1679, -1475, -1473, -1469, +947, +956, +971) of XIST gene were diagnosed by pyrosequencing. Results: We directly quantitated the methylation percentage of the promoter and 5'-end of XIST by pyrosequencing. The average methylation percentages at CpG6-8 sites (+947, +956, +971) were 45.2% at CpG6, 49.9% at CpG7, and 44.2% at CpG8 from normal female and normal male were 90.6%, 96.7%, 87.8%, respectively. Nether CpG 1-5sites (-1696, -1679, -1475, -1473, -1469) had any effect on XX and XY. Conclusion: This method is sensitive for quantifying the small percentage change in the methylation status of XIST, and may be used for diagnosis.

목 적: X 염색체 불활성화는 여성과 남성 사이에 X 염색체의 유전자 발현 유지를 위해 여성의 X 염색체 중 하나가 불활성화 되는 현상이다. 이러한 X 염색체 불활성화는 해독되지 않는 XIST 유전자에 의해 조절된다. XIST 유전자는 오직 불활성화된 X 염색체 에서만 발현되고, 활성화된 X 염색체 에서는 발현되지 않는다. 따라서 체세포에서 활성화된 X 염색체의 XIST 유전자는 promoter 부분이 메틸화 되어있고, 불활성화된 X 염색체에서는 메틸화가 거의 되어 있지 않다. 연구방법: 본 연구에서는 정상 여성과 정상 남성의 XIST 유전자의 promoter와 5'-end 지역의 메틸화 차이를 측정하기 위해 정상여성과 남성의 혈액에서 DNA를 추출하여 파이로시퀀싱 (Pyrosequencing) 방법을 통해 XIST 유전자의 총 8부분의 CpG 영역 (-1696, -1679, -1475, -1473, -1469, +947, +956, +971)을 분석하였다. 결 과: 총 8부분의 CpG 영역을 분석한 결과, promoter 부분인 CpG 1-5 영역 (-1696, -1679, -1475, -1473, -1469)에서는 여성과 남성의 메틸화 정도에 차이가 없었다. 그러나 5'-end 부분인 CpG6-8 영역 (+947, +956, +971)에서는 여성이 45.2% 49.9% 44.2%, 남성이 90.6%, 96.7%, 87.8%으로 메틸화 정도가 차이를 나타냈다. 결 론: 따라서 본 연구에 사용한 방법은 XIST 유전자의 메틸화 패턴의 차이를 기존의 방법보다 신속하고 정확하게 분석할 수 있다는 장점이 있기 때문에 유용하게 사용될 수 있을 것이다.

Keywords

References

  1. Lyon MF. Gene action in the x-chromosome of the mouse (mus musculus l.). Nature 1961; 190: 372-3. https://doi.org/10.1038/190372a0
  2. Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J, et al. The human xist gene: Analysis of a 17 kb inactive x-specific rna that contains conserved repeats and is highly localized within the nucleus. Cell 1992; 71: 527-42. https://doi.org/10.1016/0092-8674(92)90520-M
  3. Spatz A, Borg C, Feunteun J. X-chromosome genetics and human cancer. Nat Rev Cancer 2004; 4: 617-29. https://doi.org/10.1038/nrc1413
  4. Heard E, Disteche CM. Dosage compensation in mammals: Fine-tuning the expression of the x chromosome. Genes Dev 2006; 20: 1848-67. https://doi.org/10.1101/gad.1422906
  5. Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B. Xist rna and the mechanism of x chromosome inactivation. Annu Rev Genet 2002; 36: 233-78. https://doi.org/10.1146/annurev.genet.36.042902.092433
  6. Beard C, Li E, Jaenisch R. Loss of methylation activates xist in somatic but not in embryonic cells. Genes Dev 1995; 9: 2325-34.
  7. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific pcr: A novel pcr assay for methylation status of cpg islands. Proc Natl Acad Sci U S A 1996; 93: 9821-6. https://doi.org/10.1073/pnas.93.18.9821
  8. Heard E. Recent advances in x-chromosome inactivation. Curr Opin Cell Biol 2004; 16: 247-55. https://doi.org/10.1016/j.ceb.2004.03.005
  9. Turner JM, Mahadevaiah SK, Elliott DJ, Garchon HJ, Pehrson JR, Jaenisch R, et al. Meiotic sex chromosome inactivation in male mice with targeted disruptions of xist. J Cell Sci 2002; 115: 4097-105. https://doi.org/10.1242/jcs.00111
  10. Yu-Mi Jeong JHP, Sook-Hwan Lee, Tae-Gyu Chung, Yong Sung Kim, Nam-Soon Kim et al. The study of x chromosome inactivartion mechanism in klinefelter's syndrome by cdna microarray experiment. Genomics & informatics 2004; 2(1): 30-5.
  11. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 1992; 89: 1827-31. https://doi.org/10.1073/pnas.89.5.1827
  12. Clark SJ, Harrison J, Paul CL, Frommer M. High sensitivity mapping of methylated cytosines. Nucleic Acids Res 1994; 22: 2990-7. https://doi.org/10.1093/nar/22.15.2990
  13. Schumacher A, Kapranov P, Kaminsky Z, Flanagan J, Assadzadeh A, Yau P, et al. Microarray-based DNA methylation profiling: Technology and applications. Nucleic Acids Res 2006; 34: 528-42. https://doi.org/10.1093/nar/gkj461
  14. Dupont JM, Tost J, Jammes H, Gut IG. De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem 2004; 333: 119-27. https://doi.org/10.1016/j.ab.2004.05.007
  15. Tost J, Gut IG. DNA methylation analysis by pyrosequencing. Nat Protoc 2007; 2: 2265-75. https://doi.org/10.1038/nprot.2007.314
  16. Ronaghi M, Nygren M, Lundeberg J, Nyren P. Analyses of secondary structures in DNA by pyrosequencing. Anal Biochem 1999; 267: 65-71. https://doi.org/10.1006/abio.1998.2978
  17. Reed K, Poulin ML, Yan L, Parissenti AM. Comparison of bisulfite sequencing pcr with pyrosequencing for measuring differences in DNA methylation. Anal Biochem 397: 96-106.
  18. Camargo M, Wang N. Cytogenetic evidence for the absence of an inactivated x chromosome in a human female (xx) breast carcinoma cell line. Hum Genet 1980; 55: 81-5. https://doi.org/10.1007/BF00329131
  19. Dutrillaux B, Muleris M, Seureau MG. Imbalance of sex chromosomes, with gain of early-replicating x, in human solid tumors. Int J Cancer 1986; 38: 475-9. https://doi.org/10.1002/ijc.2910380404
  20. Wang N, Cedrone E, Skuse GR, Insel R, Dry J. Two identical active x chromosomes in human mammary carcinoma cells. Cancer Genet Cytogenet 1990; 46: 271-80. https://doi.org/10.1016/0165-4608(90)90112-N
  21. Teixeira MR, Pandis N, Dietrich CU, Reed W, Andersen J, Qvist H, et al. Chromosome banding analysis of gynecomastias and breast carcinomas in men. Genes Chromosomes Cancer 1998; 23: 16-20. https://doi.org/10.1002/(SICI)1098-2264(199809)23:1<16::AID-GCC3>3.0.CO;2-9
  22. Rudas M, Schmidinger M, Wenzel C, Okamoto I, Budinsky A, Fazeny B, et al. Karyotypic findings in two cases of male breast cancer. Cancer Genet Cytogenet 2000; 121: 190-3. https://doi.org/10.1016/S0165-4608(00)00254-5
  23. Laner T, Schulz WA, Engers R, Muller M, Florl AR. Hypomethylation of the xist gene promoter in prostate cancer. Oncol Res 2005; 15: 257-64. https://doi.org/10.3727/096504005776404607
  24. Oktem O, Paduch DA, Xu K, Mielnik A, Oktay K. Normal female phenotype and ovarian development despite the ovarian expression of the sex-determining region of y chromosome (sry) in a 46,xx/69,xxy diploid/triploid mosaic child conceived after in vitro fertilization-intracytoplasmic sperm injection. J Clin Endocrinol Metab 2007; 92: 1008-14. https://doi.org/10.1210/jc.2006-1963