X-선촬영 조사 조건하에서 다결정 요오드화수은 박막검출기의 신호특성 분석

 Analysis of the Signal Properties of Polycrystalline Hgl₂ Film Detector under Radiographic Irradiation Condition —

가야대학교 방사선학과

김 종 언

— 국문초록 —

이 연구의 목적은 다결정 요오드화수은 박막검출기를 제작하여 X-선촬영 조사 조건하에서 검출기 성능의 평가이다. 두께 210과 320 # 갖는 다결정 요오드화수은 박막검출기들은 스크린 프린트 기술로 제작하였 다. X-선 감도와 암전류의 측정들은 두 검출기에 대하여 수행하였다. 그리고 X-선 반응의 선형성과 재현성 의 측정들은 두께 320 # 검출기에 대하여 수행하였다. 두께 320 # 검출기에 인가된 0.05에서 2 V/# 까 지의 전기장 강도들에 대하여, X-선 감도들은 233에서 1,408×10⁶ electrons/mR·mm²까지 측정되었다. 그리 고 암전류들은 3.2에서 118 pA/mm²까지 측정되었다. Zhong Su 등에 의해 보고된 값들과 비교에서, X-선 감도들은 Zhong Su 등에 의해 측정된 X-선 감도들보다 약 2배 더 크게 나타냈다. 그리고 암전류들은 Zhong Su 등에 의해 측정된 암전류들보다 약 9배 더 크게 나타냈다. X-선 반응의 선형성은 상관계수(r)로 서 0.988을 얻었다. 재현성은 변동계수로서 0.002를 얻었다. 이 연구는 X-선촬영 조사 조건하에서 능동매트 릭스 평판영상장치에 사용할 수 있는, 제작된 다결정 요오드화수은 박막검출기의 성능 데이터를 제공한다.

중심 단어: 다결정 요오드회수은 박막검출기, X-선 감도, 암전류, 재현성, 직선성

Ⅰ.서 론

디지털 X-선촬영(digital radiography)에 사용되는 직접 변환 평판X-선영상검출기(direct-conversion flat-panel X-ray image detector)의 광전도체(photoconductor) 물 질로서 안정화된 비정질 셀레늄(stabilized amoprphous selenium, a-Se)은 상용화되어 현재 임상에서 사용하고 있다¹⁻⁴⁾. 최근에, 다결정 요오드화수은(Polycrystalline HgI₂)이 비정질 셀레늄의 대체물질로서 연구가 활발하게 진행되고 있다⁵⁻⁹⁾. 이 물질은 비정질 셀레늄보다 밀도와 원자번호가 크고, 전리에너지가 작아 X-선 반응 신호의 감도를 향상시킬 수 있다. 또한 전극에 인가되는 바이어 스 전압이 훨씬 더 작은 이점을 가진다.

본 연구에서는 스크린 프린트(screen print)기술로 요 오드화수은 박막검출기(HgI₂ film detector)를 제작하여 X-선촬영 조사 조건하에서 검출기의 성능을 평가하는데 목적이 있다.

의료영상에서, 검출기의 X-선 감도는 입사한 X-선이 외부 회로에 의해 수집될 수 있는 전하로 변환하는데 있

^{*}접수일(2010년 7월 3일), 심사일(2010년 8월 9일), 확정일(2010년 9월 6일) - 본 연구는 2010년도 가야대학교 학술연구비 지원에 의하여 수행된 것임.

교신저자: 김종언, (621-748) 경남 김해시 삼계동 60번지 기야대학교 방사선학과 TEL: 055-330-1184, HP: 010-4185-8218 FAX: 055-330-1146, E-mail: kjepk@yahoo.co.kr

어서 광전도체의 효율에 의존한다. 그 감도는 광전도체 물질에서 양자효율(quantum efficiency)이 크고 전리에 너지(ionization energy)가 작을수록 그리고 외부회로에 수집되는 수집효율(collecting efficiency)이 클수록 증가 한다³⁾. 암전류는 인가 전기장에 의한 전하 주입과 광전도 체 물질의 열 여기에 기인한다. 이 암전류(dark current) 는 상업적으로 이용할 수 있는 능동매트릭스 평판영상장 치(active-matrix flat-panel imager, AMFPI)에서 10 pA/mm² 이하로 제한 한다¹⁰⁾. Zhong Su 등은 X-선촬영 조사 조건하에서 다결정 요오드화수은 박막검출기의 신호 특성들을 분석하여 보고하였다¹⁰⁾.

실험은 스크린 프린드 기술로 제작된 다결정 요오드화 수은 박막검출기를 제작하여, X-선 빔의 조사 조건하에 서 X-선 감도, X-선 반응의 직선성, 재현성을 측정한다. 또한 X-선 빔의 조사가 없는 상태에서 인가하는 전기장 강도에 대한 암전류를 측정한다. 측정으로부터 얻은 데이 터로부터 검출기의 성능을 정량적으로 평가하고자 한다.

Ⅱ. 재료 및 방법

1. 다결정 요오드화수은 박막검출기 제작

스크린 프린트 기술로 박막검출기를 제작하기 위하여. 세락 사(Cerac corporation)의 순도 99.9%의 요오드화수 은이 사용되었다. 바인더 용액(binder solution)은 DGMA(diethylen glycol monobutyl ether acetate)와 분산제 DGME(diethylen glycol monoethyl ether)를 섞 은 용매에 폴리머 물질(poly-vinyl-butral)을 첨가하여 만들었다. 그 다음 겔 반죽(gel paste)은 바인더 용액과 요오드화수은을 3대7의 구성비로 혼합하여 만들었다. 두 개의 요오드화수은 박막검출기들의 제작과정 순서는 다음 과 같다. 하부전극(bottom electrode)은 두 개의 유리기 판(glass substrate)위에 DC sputtering system으로 ITO(indium thin oxide)를 대략 유리기판 크기(6.5×4.5 cm²)로 증착하였다. 광전도체 층(photocoductor layer)은 두 개의 ITO 유리기판 위에 동일한 면적(3×3 cm²)에 각 각 두께 210과 320 m으로 겔 반죽을 스크린 프린트 기술 로 코팅하여 증착하였다. 그리고 각각의 광전도체 층 위 에 유전체 층(dielectric layer, 5 µm)은 PDS 2060(SCS, USA)으로 증착하였다. 상부 전극(top electrode)은 각각 의 유전체 층 위에 DC sputtering system으로 ITO를 1×1 cm² 증착하였다. 두 개의 백금선(platinum wire)들

은 광전도체 층에 바이어스 전압의 인가와 광전류를 측정 하기 위하여 상부와 하부 전극에 연결하였다. 제작된 다 결정 요오드화수은 박막검출기의 도식도와 사진은 각각 Fig. 1, Fig. 2에서 보여준다.

Fig. 1. Schematic diagram of the fabricated polycrystalline Hgl_2 film detector

Fig. 2. A photograph of polycrystalline Hgl₂ film detector

2. 전기 신호 측정

1) X-선 감도

영상검출기의 X-선 감도(X-ray sensitivity)는 아래 식으로 정의된다¹⁾.

$$S = Q/AX \tag{1}$$

여기서 Q는 수집전극의 단위 면적당 수집전하(nC/mm²), A는 X-선 빔을 받는 검출기 면적 즉 상부전극 면적 (mm²), X는 단위면적당 조사선량(mR/mm²)이다.

Fig. 3에서 X-선 빔이 유도한 광전류 파형(photocurrent waveform) 측정에 대한 도식도를 보여준다. 여 기에서, 광전류 파형의 측정은 검출기의 상부와 하부 전 극에 전압을 인가한 후 X-선 빔을 조사하면 전기계 (electrometer)의 전치증폭기(preamplifier) 출력 단자를 오실로스코프의 입력으로 하여 데이터가 수집된다. 이때 전기계는 측정되는 순간의 눈금(scale)에 따라 1 nA를 1 V 또는 1µA를 1V로 출력한다. X-선 빔을 조사하기 위하 여, 방사선종양학과에서 사용되는 시뮬레이터인 어규어티 X-선 장치(acuity X-ray equipment, varian corporation)가 사용되었다. 두께 210과 320 µm의 두 검출기에 대하여, X-선 표적(target)과 검출기의 윗면 사이의 거리 는 100 cm로 하였고 그리고 조사면적은 5×5 cm²이다. X-선 빔이 유도한 광전류 파형 측정은 암상태(dark state) 조건 하에서 상부전극에 마이너스 바이어스 전압 의 적용을 통하여 성취되는 0.05. 0.1. 0.2. 0.3. 0.5. 0.6, 0.8, 1, 1.3, 1.5 그리고 2 V/um 각각의 전기장 강도 를 인가하여 수행을 하였다. 이때 70 kVp. 100 mA. 0.03 s 의 X-선 빔 조사로부터 광전류 파형은 오실로스코프로 수집된다. 이 측정은 각각의 전기장 강도에 대하여 1번으 로 하였다. X-선 빔이 유도한 전하량은 수집된 광전류 파형의 데이터(data)를 ACQ 프로그램(acqknowledge program)에서 적분을 수행하여 얻었다.

조사선량의 측정은 X-선 표적과 전리조(ionization chamber 2060, radical corporation, USA)의 거리를 100 cm, 조사면적을 5×5 cm²하여 광전류 파형의 측정과 동일한 X-선 빔 조사조건 하에서 수행을 하였다. 이때 측정되어진 값은 5번 측정으로부터 얻은 평균값이다.

2) X-선 반응의 직선성

X-선 반응의 직선성(linearity of X-ray response)을 측정하기 위하여, 두께 320 µm의 검출기를 사용하였다. 측정은 X-선 빔이 유도한 광전류 파형의 측정과 같은 기 하학적 조건 하에서 수행을 하였다. X-선 빔의 조사는 관전압과 조사시간은 70 kVp, 0.03 s로 고정하고, 관전류 는 50, 100, 160, 200, 250 그리고 320 mA로 변화시켰 다. 이때 검출기에 인가되는 전기장 강도는 0.3 V/µm를 사 용하였다. 측정값은 1번의 측정으로부터 얻은 전하량이다.

3) 암전류(dark current)

Fig. 3의 도식도에서, 두께 210과 320 m를 갖는 광전 도체 층을 통하여 흐르는 암전류는 암상태 조건하에서 X-선 빔의 조사없이 상부전극에 마이너스 바이어스 전압 의 적용을 통하여 성취되는 0.05, 0.1, 0.2, 0.3, 0.5, 0.6, 0.8, 1, 1.3, 1.5 그리고, 2 V/m 각각의 전기장 강 도를 인가한 후 암전류 파형의 안정한 수준(stable level) 에서 전기계(electrometer)를 통하여 전류를 측정하였다. 측정값은 1번의 측정으로부터 얻은 전류값이다.

Fig. 3. Schematic diagram for the photocurrent wave measurement

4) 재현성

재현성(reproducibility)을 측정하기 위하여, 두께 320 때의 검출기를 사용하였다. 측정은 X-선 빔이 유도한 광 전류 파형 측정과 같은 기하학적 조건하에서 수행을 하였 다. 이때 70 kVp, 100 mA 0.03 s의 조사 조건하에서 검 출기에 0.3 V/때의 전기장을 인가하였다. 7번의 측정값 (전하량)으로부터 재현성을 얻었다. 재현성은 변동계수 (coefficient of variation)로서 측정의 평균값에 대한 표 준편차(1o)의 비로서 나타내었다.

Ⅲ. 결과 및 논의

실험으로부터 얻은 광전류 파형은 Fig. 4에서 보여준 다. 이 파형으로부터 측정되어진 조사시간(0.0302 s)은 X-선 빔을 조사한 시간을 정확하게 나타내 주고 있다.

X-선 감도는 X-선이 유도한 전하량과 조사선량으로부 터 얻어진다. X-선이 유도한 전하량의 측정과정은 Fig. 5에서 보여준다. Fig. 5(a)에서 보여주는 바와 같이, 광 전류 파형의 적분은 조사시간에 100 ms를 더한 130 ms의

Fig. 4. A photocurrent wave collected

Fig. 5. Measuring process of the X-ray-induced charge. (a) Integration of photocurrent wave, (b) Integration of dark current, respectively

시간간격에서 수행을 하였다. 그러나, 상업적으로 사용하 는 능동매트릭스 평판영상장치는 광전류 파형의 적분을 조사시간에 200 ms를 더하여 전형적으로 수행한다¹⁰⁾. 실 험에서 200 ms를 더하여 적분하지 못한 이유는 데이터를 수집한 총 시간이 적었기 때문이다. 즉 데이터 수집 샘플 율(sample rate)이 적었기 때문이다. 그렇지만, 조사시간 에 100 ms와 200 ms를 확장하여 적분한 각각의 값의 차 이는 거의 없다. 암전류의 적분은 Fig. 5(b)와 같이 암전 류에 대응하는 기저선(baseline)에서 광전류 파형의 적분 시간과 동일한 시간간격에서 수행을 하였다. X-선이 유 도한 전하량은 광전류 파형의 적분 값에서 암전류의 적분 값을 빼 줌으로서 얻었다. 조사선량은 평균값으로 0.01572 mR/mm²을 얻었다. X-선 감도(단위, electrons/ mR·mm²)는 식(1)에서 nC을 10⁻⁹ C로 환산한 다음 1e/1.602×10⁻¹⁹ C를 곱하여 얻었다. 이 X-선 감도는 Fig. 6에서 보여주며, 두 검출기에서 최대 감도에 이르기 전의 감도는 전기장 강도의 증가와 함께 증가를 나타낸 다. 두께 210과 320 때를 갖는 검출기들에서 최대감도는 각각 전기장 강도 1.3 V/m와 1.5 V/m에서 얻었다. 그리 고 두께가 더 큰 검출기에서 더 큰 감도를 얻었다. Zhong Su 등은 리얼타임 레디오그러피 사(Real-Time

Radiography corporation)에서 스크린 프린트 기술로 제 작된 두께 320 때를 갖는 다결정 요오드화수은 박막검출 기에 대한 X-선 감도 및 암전류의 신호특성을 보고하였 다. 이 검출기의 제작된 구조는 다음과 같다. 하부전극 (ITO) 위에 벽 층(barrier layer)을 고분자 물질(polymer material)을 사용하여 증착하였다. 이 층 위에 광전도체 층을 증착하였고, 그 위에 상부전극으로 팔라듐(Pd)을 증 착하였다. 따라서, 이 실험에서 제작된 검출기와 구조가 다르다. 또한 다결정 요오드화수은과 폴리머(바인더 용액) 의 구성비도 다르다. 그리고 바인더 용액의 구성 성분이 다른 것으로 추정된다. Zhong Su 등에 의해 행해진 X-선 빔의 조사조건은 관전압 72 kVp. 관전류 10 mA . 조 사시간 100, 200, 320과 400 ms 등을 사용하였다. 그리 고 표적으로부터 검출기까지의 측정거리는 100 cm를 사 용하였다. 따라서, X-선 빔의 조사조건은 본 실험과 거 의 같다. 이유는 관전압은 거의 같고, 광전류는 조사선량 에 비례하며, 조사선량은 관전류와 조사시간의 곱(mAs) 에 비례하기 때문이다. 그러므로, 본 실험으로부터 측정 된 X-선 감도는 Zhong Su 등에 의해 측정된 감도보다 약 2배 더 큰 값을 얻었다.

X-선 반응의 직선성(linearity of X-ray response)은 Fig. 7에서 보여준다. 이 그림에서 상관계수(r)는 0.988 로서 관전류 변화에 따라 선형적으로 검출기가 반응하는 것을 나타낸다.

암전류는 Fig. 8에서 보여준다. 이 그림에서, 암전류는 전기장 강도의 증가와 함께 증가한다. 의료영상 적용에 요 구되는 암전류의 허용수준(tolerable level)은 10 pA/mm² 이다. 실험에서, 전기장 강도 0.5 V/m를 인가한 두께 210과 320 m를 갖는 두 검출기의 암전류는 각각 8.5 pA/mm²와 9.7 pA/mm²를 얻었다. 이 결과는 허용수준이

Fig. 6. X-ray sensitivity plotted as a function of electric field

Fig. 7. Collected charge as a function of tube current

Fig. 8. Dark current plotted as a function of electric field

하에 들어간다. 그렇지만, 전체 암전류는 Zhong Su 등에 의해 측정된 암전류보다 약 9배 더 큰 값을 얻었다.

재현성은 변동계수(coefficient of variation)로 나타내 었다. 변동계수는 0.002을 얻었다. 이때 신뢰구간은 22.934±0.037이다.

실험에서 관전압은 70 kVp를 사용하였다. 이 관전압은 IEC 61627에서 명시하고 있는 검출양자효율(detective quantum efficiency, DQE) 측정을 위한 방사선 품질 (radiation quality)이다¹¹⁾.

실험의 결과들로부터, 제작된 다결정 요오드화수은 검 출기의 성능은 리얼타임 레디오그러피 사에서 제작된 검 출기에 비하여 X-선 감도에서 품질이 좋게 평가되었다.

IV. 결 론

본 실험에서 두께 320 µm의 검출기에 인가된 0.05에서

2 V/µm까지의 전기장 강도들에 대하여, X-선 감도들은 233에서 1408×10⁶ electrons/mR·mm²까지 측정되었다. 그리고 암전류들은 3.2에서 118 pA/mm²까지 측정되었다. Zhong Su 등에 의해 보고된 값들과 비교에서, X-선 감 도들은 Zhong Su 등에 의해 측정된 X-선 감도들보다 약 2배 더 크게 나타냈다. 그리고 암전류들은 Zhong Su 등에 의해 측정된 암전류들보다 약 9배 더 크게 나타냈 다. X-선 반응의 선형성은 상관계수(r)로서 0.988을 얻 었다. 재현성은 변동계수로서 0.002을 얻었다.

이 연구는 X-선촬영 조사 조건하에서 능동매트릭스 평 판영상장치에 사용할 수 있는, 제작된 다결정 요오드화수 은 박막검출기의 성능 데이터를 제공한다.

참 고 문 헌

- Kasap SO, Rowlands JA.: Direct-Conversion Flat-Panel X-ray Image Detectors, IEEE Proc.-Circuits Devices Syst., 149(2), 85-96, April 2002
- Kasap SO, Rowlands JA.: Direct-Conversion Flat-Panel X-ray Image Sensors for Digital Radiography, Proceeding of the IEEE, 90(4), 591-604, April 2002
- Kasap SO, Zahangir Kabir M, Rowlands JA.: Recent Advances in X-ray Photoconductors for Direct Conversion X-ray Image Detectors, Current Applied Physics, 6, 288-292, 2006
- Kasap SO, Rowlands JA.: Review X-ray Photoconductors and Stabilized a-Se for Direct Conversion Digital Flat-Panel X-ray Image Detectors, Journal of Materials Science: Materials in Electronics, 11, 179-198, 2000
- Schieber M, Hermon H, Zuck A, at al.: Theoretical and Experiment Ssensitivity to X-rays of Single and Polycrystalline HgI₂ Compared with Different Single-Crystal Detectors, Nucl. Instr. Meth. Phys. Res. A, 458, 41-46, 2001
- Schieber M, Hermon H, Street RA, at al.: Radiological X-ray Response of Polycrystalline Mercuric Iodide Detectors, Proc. of the SPIE-MI, 3977, 48-55, 2000
- Zentai G, Partain L, Pavlyuchkova R, at al.: Mercuric Iodide Medical Imagers for Low-

Exposure Radiography and Fluoroscopy, Proc. of the SPIE-MI, 5368, 200-300, 2004

- Breen BN, Dagan O, Melekhov L, at al.: Characterization of Mercuric Iodide Photoconductor for Radiographic and Fluoroscopic Medical Imagers, Proc. of the SPIE-Hard X-Ray and Gamma-Ray Detector Physics V, 5198, 134-143, 2003
- Schieber M, Hermon H, Zuck A, at al.: Thick films of X-ray Polycrystalline Mercuric Iodide Detectors, J. Cryst. Growth, 225, 118-123, 2001
- Zhong Su, Antonuk LE, El-Mohri Y, et al.: Systematic Investigation of the Signal Properties of Polycrystalline HgI₂ Detectors under Mammographic, Radiographic, Fluoroscopic and Radiotherapy Irradiation Conditions, Phys. Med. Biol., 50, 2907-2928, 2005
- 11. IEC CD 62220-1.: Medical Electrical Equipment-Characteristics of Digital X-ray Imaging Devices: Determination of the Detective Quantum Efficiency, 2000

Abstract

Analysis of the Signal Properties of Polycrystalline Hgl₂ Film Detector under Radiographic Irradiation Condition

Jong-Eon Kim

Department of Radiological Science, Kaya University

The purpose of this study is an evaluation of the performance of a detector under radiographic irradiation condition by fabricating the polycrystalline HgI₂ film detector. The polycrystalline HgI₂ film detectors with thickness of 210 and 320 µm were fabricated by screen print technology. Measurements of X-ray sensitivity and dark current were performed for two detectors. And measurements of the linearity of X-ray response and reproducibility were performed for the detector of thickness 320 µm. For applied electric field strengths from 0.05 to 2 V/µm to the detector of thickness 320 µm, the X-ray sensitivities were measured from 233 to 1,408×106 electrons/mR·mm². And the dark currents were measured from 3.2 to 118 pA/mm². Compared with values reported by Zhong Su et al., the X-ray sensitivities exhibit about two times larger than the X-ray sensitivities measured by Zhong Su et al. And the dark currents exhibit about nine times larger than the dark currents measured by Zhong Su et al. The linearity of X-ray response acquired 0.988 as a coefficient of correlation (r). Reproducibility acquired 0.002 as a coefficient of variation. This study provides the performance data of fabricated polycrystalline HgI₂ film detector available for an active matrix flat panel imager under radiographic irradiation condition.

Key Words: Polycrystalline HgI2 film detector, X-ray sensitivity, Dark current, Reproducibility, Linearity