SOME FIXED POINT THEOREMS AND EXAMPLE IN $\cal{M}$-FUZZY METRIC SPACE

  • Park, Jong-Seo (DEPARTMENT OF MATHEMATICS EDUCATION, CHINJU NATIONAL UNIVERSITY OF EDUCATION)
  • Received : 2009.10.28
  • Accepted : 2010.08.18
  • Published : 2010.08.31

Abstract

We introduce the concept of semi-compatible and weak-compatible in $\cal{M}$-fuzzy metric space, and prove some fixed point theorem for four self maps satisfying some conditions in $\cal{M}$-fuzzy metric space.

Keywords

References

  1. B.C. Dhage: Generalized metric spaces and mappings with fixed point. Bulletin of Calcutta Mathematical Society 84 (1992), 329-336.
  2. M. Grabiec: Fixed point in fuzzy metric spaces. Fuzzy Sets and Systems 27 (1988), 385-389. https://doi.org/10.1016/0165-0114(88)90064-4
  3. A. George & P. Veeramani: On some results in fuzzy metric spaces. Fuzzy Sets and Systems 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7
  4. J. Kramosil & J. Michalek: Fuzzy metric and statistical metric spaces. Kybernetica 11 (1975), 326-334.
  5. J.H. Park, J.S. Park & Y.C. Kwun: Fixed points in M-fuzzy metric space. Fuzzy Optimization and Decision Making(Springer) 7 (2008), no. 4, 305-315. https://doi.org/10.1007/s10700-008-9039-9
  6. J.S. Park: Some results for four self mappings in intuitionistic fuzzy 2,3-metric space using compatibility. JP J. fixed point Theory & Appl. 3 (2008), no. 1, 63-83. https://doi.org/10.1007/s11784-008-0063-8
  7. S. Sedghi, N. Shobe & J.H. Park: A common fixed point theorem in M-fuzzy metric spaces. (Submitted).
  8. B. Schweizer & A. Sklar: Statistical metric spaces. Pacific J. Math. 10 (1960), 314-334.