ISSN 1226-0657

J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. Volume 17, Number 3 (August 2010), Pages 199–203

GENERALIZED sg-OPEN SETS IN STRONG GENERALIZED NEIGHBORHOOD SPACES

WON KEUN MIN

ABSTRACT. We introduce the notions of sg-semiopen set and other kinds of generalized sg-open sets and we investigate some properties for such generalized sg-open sets.

1. INTRODUCTION

Császár introduced the notions of generalized topological spaces and generalized open sets [1]. In [3], the author studied some properties for generalized topologies. Also the author introduced the strong generalized neighborhood system which induces a strong generalized neighborhood space (briefly SGNS) and investigated topological properties for SGNS's [4, 5].

In this paper, we introduce the notions of generalized sg-open sets on SGNS; sg-semiopen set, sg-preopen set, sg-regular open set, sg- α open set and sg- β open set. And we investigate characterizations and some properties for such generalized sg-open sets.

2. Preliminaries

Let X be a nonempty set, exp(X) the power set of X, and $\psi : X \to exp(exp(X))$ satisfy $x \in V$ for $V \in \psi(x)$. Then $V \in \psi(x)$ is called a *generalized neighborhood* of $x \in X$ and ψ is called a *generalized neighborhood system* [1] on X.

Definition 2.1 ([4]). Let $\psi : X \to exp(exp(X))$. Then ψ is called a *strong generalized neighborhood system* on X if it satisfies the following:

(1) $x \in V$ for $V \in \psi(x)$;

 \bigodot 2010 Korean Soc. Math. Educ.

Received by the editors July 30, 2008. Revised July 26, 2010. Accepted August 18, 2010. 2000 Mathematics Subject Classification. 54A05.

Key words and phrases. sg-semiopen, sg-preopen, sg-regular open, sg- α open, sg- β open.

WON KEUN MIN

(2) for $U, V \in \psi(x), V \cap U \in \psi(x)$.

Then the pair (X, ψ) is called a strong generalized neighborhood space (briefly SGNS). Then $V \in \psi(x)$ is called a strong generalized neighborhood of $x \in X$.

Definition 2.2 ([4]). Let (X, ψ) be an SGNS and $G \subseteq X$. Then G is called an sg_{ψ} -open set if for each $x \in G$, there is $V \in \psi(x)$ such that $V \subseteq G$.

Let us denote $sg_{\psi}(X)$ the collection of all sg_{ψ} -open sets on an SGNS (X, ψ) . We call the collection $sg_{\psi}(X)$ a strong generalized topology on X. The complements of sg_{ψ} -open sets are called sg_{ψ} -closed sets. The sg_{ψ} -interior of A (denoted by $i_{\psi}(A)$) is the union of all $G \subseteq A, G \in sg_{\psi}(X)$, and the sg_{ψ} -closure of A (denoted by $c_{\psi}(A)$) is the intersection of all sg_{ψ} -closed sets containing A.

Theorem 2.3 ([4]). Let (X, ψ) be an SGNS.

- (1) The empty set is an sg_{ψ} -open set;
- (2) The intersection of two sg_{ψ} -open sets is an sg_{ψ} -open set;
- (3) The arbitrary union of sg_{ψ} -open sets is an sg_{ψ} -open set.

Theorem 2.4 ([4]). Let (X, ψ) be an SGNS. We get the following things.

- (1) $i_{\psi}(A) \subseteq A \subseteq c_{\psi}(A)$ for $A \subseteq X$.
- (2) $c_{\psi}(A \cup B) = c_{\psi}(A) \cup c_{\psi}(B)$ and $i_{\psi}(A \cap B) = i_{\psi}(A) \cap i_{\psi}(B)$ for $A, B \subseteq X$.
- (3) $i_{\psi}(i_{\psi}(A)) = i_{\psi}(A)$ and $c_{\psi}(c_{\psi}(A)) = c_{\psi}(A)$ for $A \subseteq X$.
- (4) $c_{\psi}(A) = X i_{\psi}(X A)$ and $i_{\psi}(A) = X c_{\psi}(X A)$ for $A \subseteq X$.

Let X be a nonempty set and $\tau \subseteq exp(X)$:

(1) τ is called a generalized topology [1] on X iff (i) $\emptyset \in \tau$ and (ii) $G_i \in \tau$ for $i \in I \neq \emptyset$ implies $G = \bigcup_{i \in I} G_i \in \tau$.

(2) τ is called a strong generalized topology [4] (or quasi-topology [2]) on X iff (i) $\emptyset \in \tau$, (ii) $G_1, G_2 \in \tau$ implies $G_1 \cap G_2 \in \tau$ and (iii) $G_i \in \tau$ for $i \in I \neq \emptyset$ implies $G = \bigcup_{i \in I} G_i \in \tau$.

(3) τ is called a *supratopology* [6] on X iff (i) $\emptyset, X \in \tau$ and (ii) $G_i \in \tau$ for $i \in I \neq \emptyset$ implies $G = \bigcup_{i \in I} G_i \in \tau$.

3. Main Results

Definition 3.1. Let (X, ψ) be an SGNS and $A \subseteq X$. Then A is said to be

(1) sg- α open if $A \subseteq i_{\psi}(c_{\psi}(i_{\psi}(A)))$,

- (2) sg-semiopen if $A \subseteq c_{\psi}(i_{\psi}(A))$,
- (3) sg-preopen if $A \subseteq i_{\psi}(c_{\psi}(A))$,

200

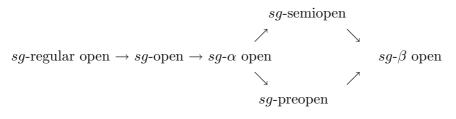
GENERALIZED sg-OPEN SETS IN STRONG GENERALIZED NEIGHBORHOOD SPACES 201

(4) sg-regular open if $A = i_{\psi}(c_{\psi}(A)),$

(5) sg- β open if $A \subseteq c_{\psi}(i_{\psi}(c_{\psi}(A)))$.

Denote the set of all sg- α open (resp., sg-semiopen, sg-preopen, sg-regular open, sg- β open) by $sg\alpha(X)$ (resp., sgSO(X), sgPO(X), sgRO(X), $sg\beta(X)$).

The complement of sg- α open (resp., sg-semiopen, sg-preopen, sg-regular open, sg- β open) is called sg- α closed (resp., sg-semiclosed, sg-preclosed, sg-regular closed, sg- β closed)



The converse implications are not always true:

Example 3.2. Let $X = \{a, b, c, d\}$. Consider a strong generalized topology $\tau_1 = \{\emptyset, \{a\}, \{a, b\}, \{a, b, c\}\}$ on X.

(1) Let $A = \{a, b\}$. Then A is an sg-open set but since $i_{\psi}(c_{\psi}(A)) = \{a, b, c\}$, A is not sg-regular open.

(2) Let $A = \{a, c\}$. Since $i_{\psi}(c_{\psi}(i_{\psi}(A))) = i_{\psi}(c_{\psi}(\{a\})) = i_{\psi}(X) = \{a, b, c\}$, A is an sg- α open set but not sg-open.

Consider a strong generalized topology $\tau_2 = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ on X.

(1) Let $A = \{b\}$. Then $c_{\psi}(i_{\psi}(c_{\psi}(A))) = \{b, c, d\}$ and $c_{\psi}(i_{\psi}(A)) = \{d\}$, so A is an sg- β open set but not sg-semiopen.

(2) Let $A = \{a, d\}$. Since $c_{\psi}(i_{\psi}(A)) = A$ and $i_{\psi}(c_{\psi}(i_{\psi}(A))) = \{a\}$, A is an sg-semiopen set but not sg- α open.

(3) Let $A = \{a, b\}$. Since $i_{\psi}(c_{\psi}(A)) = \{a, b, c\}$, A is an sg-preopen set but not $sg-\alpha$ open.

(4) Let $A = \{a, d\}$. From (2), A is an sg- β open set. But since $i_{\psi}(c_{\psi}(A)) = \{a\}$, A is not an sg-preopen set.

Theorem 3.3. Let (X, ψ) be an SGNS and $A \subseteq X$.

(1) A is sg- α closed if and only if $c_{\psi}(i_{\psi}(c_{\psi}(A))) \subseteq A$,

(2) A is sg-semiclosed if and only if $i_{\psi}(c_{\psi}(A)) \subseteq A$,

(3) A is sg-preclosed if and only if $c_{\psi}(i_{\psi}(A)) \subseteq A$,

(4) A is sg-regular closed if and only if $A = c_{\psi}(i_{\psi}(A))$,

(5) A is g-
$$\beta$$
 closed if and only if $i_{\psi}(c_{\psi}(i_{\psi}(A))) \subseteq A$.

Proof. Straightforward.

Lemma 3.4. Let (X, ψ) be an SGNS and $A \subseteq X$.

- (1) $c_{\psi}(i_{\psi}(c_{\psi}(i_{\psi}(A)))) = c_{\psi}(i_{\psi}(A)).$
- (2) $i_{\psi}(c_{\psi}(i_{\psi}(c_{\psi}(A)))) = i_{\psi}(c_{\psi}(A)).$

Proof. (1) $i_{\psi}(A) \subseteq c_{\psi}(i_{\psi}(A))$ implies $c_{\psi}(i_{\psi}(i_{\psi}(A))) \subseteq c_{\psi}(i_{\psi}(c_{\psi}(i_{\psi}(A))))$. By Theorem 2.4, we have $c_{\psi}(i_{\psi}(A)) \subseteq c_{\psi}(i_{\psi}(c_{\psi}(i_{\psi}(A))))$. Similarly, the other inclusion is obtained.

(2) It is similar to (1).

Theorem 3.5. Let (X, ψ) be an SGNS. Then sgSO(X) and $sg\beta(X)$ are supratopologies on X.

Proof. (i) Clearly $\emptyset \in sgSO(X)$.

(ii) Suppose that $i_{\psi}(X) \subseteq c_{\psi}(i_{\psi}(X)) = F \neq X$. Then $\emptyset \neq X - F$ and X - F is sg-open. Since $i_{\psi}(X)$ is the largest sg-open set in X, it has to contain X - F. So it is impossible that F contains $i_{\psi}(X)$: a contradiction. Hence $X = c_{\psi}(i_{\psi}(X))$, that is, $X \in sgSO(X)$.

(iii) Let $G_i \in sgSO(X)$ for $i \in I \neq \emptyset$. From Theorem 2.4, $i_{\psi}(G_i) \subseteq i_{\psi}(\cup_{i \in I}G_i)$. This implies $c_{\psi}(i_{\psi}(G_i)) \subseteq c_{\psi}(i_{\psi}(\cup_{i \in I}G_i))$. Since G_i is an sg-open set for $i \in I$, $\cup_{i \in I}G_i \subseteq c_{\psi}(i_{\psi}(\cup_{i \in I}G_i))$. Hence $\cup_{i \in I}G_i \in sgSO(X)$.

Similarly, $sg\beta(X)$ is also a supratopology on X.

Example 3.6. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$ a strong generalized topology on X. Then $c_{\psi}(i_{\psi}(X)) = X$ and $i_{\psi}(c_{\psi}(i_{\psi}(X))) = \{a, b, c\}$, so X is neither $sg\alpha$ open nor sg-preopen.

Theorem 3.7. Let (X, ψ) be an SGNS. Then $sg\alpha(X)$ is a strong generalized topology on X.

Proof. Clearly $\emptyset \in sg\alpha(X)$. Since every $sg\alpha$ -open set is sg-semiopen, the arbitrary union of $sg\alpha$ open sets is $sg\alpha$ open.

Now let $U, V \in sg\alpha(X)$. Then from Theorem 2.4, it follows $U \cap V \subseteq i_{\psi}(c_{\psi}(i_{\psi}(U)))$ $\cap i_{\psi}(c_{\psi}(i_{\psi}(V))) \subseteq c_{\psi}(i_{\psi}(U)) \cap i_{\psi}(c_{\psi}(i_{\psi}(V))) \subseteq c_{\psi}(i_{\psi}(U)) \cap i_{\psi}(c_{\psi}(i_{\psi}(V)))) \subseteq c_{\psi}(i_{\psi}(U) \cap i_{\psi}(V)) = c_{\psi}(i_{\psi}(U) \cap i_{\psi}(V)) = c_{\psi}(i_{\psi}(U \cap V))$. From Theorem 2.3, it follows $A \cap B \subseteq i_{\psi}(c_{\psi}(i_{\psi}(U \cap V)))$. Hence $U \cap V \in sg\alpha(X)$.

202

Theorem 3.8. Let (X, ψ) be an SGNS. Then sgPO(X) is a generalized topology on X.

Proof. Clearly $\emptyset \in sgPO(X)$. Let $G_i \in sgPO(X)$ for $i \in I \neq \emptyset$. From Theorem 2.4, $G_i \subseteq c_{\psi}(i_{\psi}(G_i)) \subseteq i_{\psi}(c_{\psi}(\cup_{i \in I} G_i)).$ Hence $\cup_{i \in I} G_i \in sgPO(X).$

Theorem 3.9. Let (X, ψ) be an SGNS. Then $sq\alpha(X) = sqPO(X) \cap sqSO(X)$.

Proof. Let A be a nonempty set and $A \in sg\alpha(X)$. Then $A \subseteq i_{\psi}(c_{\psi}(i_{\psi}(A)))$, so $A \subseteq i_{\psi}(c_{\psi}(A))$ and $A \subseteq c_{\psi}(i_{\psi}(A))$. Thus $A \in sgPO(X) \cap sgSO(X)$.

For the converse, let $A \in sgPO(X) \cap sgSO(X)$. Then $A \subseteq i_{\psi}(c_{\psi}(A))$ and $A \subseteq c_{\psi}(i_{\psi}(A))$. So

$$A \subseteq i_{\psi}(c_{\psi}(A)) \subseteq i_{\psi}(c_{\psi}(c_{\psi}(i_{\psi}(A)))) \subseteq i_{\psi}(c_{\psi}(i_{\psi}(A))).$$

Thus $A \in sg\alpha(X)$.

Theorem 3.10. In an SGNS (X, ψ) , set $\tau = \{G \subseteq X : G \cap U \in \mathcal{T} \text{ for all } U \in \mathcal{T}\}$ for $\mathcal{T} = sgPO(X), sgSO(X), sg\beta(X), sg\alpha(X)$. Then τ is a topology on X.

Proof. In case $\mathcal{T} = sgPO(X)$, we show that τ is a topology on X. Clearly $\emptyset, X \in \tau$. Let $G_i \in \tau$ for $i \in J$. Then for all $U \in \mathcal{T}$, since $(G_i \cap U) \in \mathcal{T}$ and $\mathcal{T} = sgPO(X)$ is a general topology, $\cup G_i \cap U = \cup (G_i \cap U) \in \mathcal{T}$. Hence $\cup G_i \in \tau$. Finally, let $G_1, G_2 \in \tau$ and $U \in \mathcal{T}$; since $(G_2 \cap U) \in \mathcal{T}$, $(G_1 \cap G_2) \cap U = G_1 \cap (G_2 \cap U) \in \mathcal{T}$. So $G_1 \cap G_2 \in \tau$. \square

The other cases are similar to $\mathcal{T} = sgPO(X)$.

References

- 1. Á. Császár: Generalized Topology, Generalized Continuity. Acta Math. Hungar. 96 (2002), 351-357.
- 2. _____: Remarks on quasi-topologies. Acta Math. Hungar. 119 (2008), no. 1-2, 197-200.
- 3. W.K. Min: Some Results on Generalized Topological Spaces and Generalized Systems. Acta Math. Hungar. 108 (2005), no. 1-2, 171-181.
- 4. _____: On strong generalized neighborhood systems and sg-open sets. Commun. Korean Math. Soc. 23 (2008), no. 1, 125-131
- 5. _____: Results on strong generalized neighborhood spaces. J. Korea Soc. Math. Edu. Ser. B: Pure Appl. Math. 15 (2008), no. 3, 221-227.
- 6. A.S. Mashhourr, A.A. Allam, F.S. Mahmoud & F.H. Khadr: On supratopological spaces. Indian J. Pure Appl. Math. 14 (1983), no. 3, 502-510.

DEPARTMENT OF MATHEMATICS, KANGWON NATIONAL UNIVERSITY, CHUNCHEON 200-701, Ko-REA

Email address: wkmin@cc.kangwon.ac.kr