Shape Memory Polymer Nanocomposites

형상 기억 고분자 나노 복합 소재

  • Hong, Jin-Ho (Department of Chemical Engineering, Inha University) ;
  • Yun, Ju-Ho (Enviromental Materials & Components R&D Center, Korea Automotive Technology Institute) ;
  • Kim, Il (The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University) ;
  • Shim, Sang-Eun (Department of Chemical Engineering, Inha University)
  • Received : 2010.07.13
  • Accepted : 2010.07.28
  • Published : 2010.09.30

Abstract

The term 'shape memory polymers (SMPs)' describes a class of polymers which can remember the original shape and recover from deformed to its original shape by the applied stimuli, e.g., heat, electricity, magnetic field, light, etc. SMPs are classified as one of the 'smart polymers' and have great potentials as high-value-added materials. Especially, low thermal, electrical, and mechanical properties of SMPs can be improved by incorporating the various fillers. This paper aims to review the SMPs and their basic principles, and the trends of the development of SMPs nanocomposites.

형상 기억 고분자(shape memory polymers, SMPs)는 일정한 온도 또는 특정 자극이 주어졌을 때 가해진 일시적인 변형으로부터 처음 상태로 되돌아 오는 고분자를 말한다. 이러한 형상 기억 고분자는 각종 산업에서 자가 조립 또는 자가 수리가 가능한 스마트 고분자로 분류되어 고부가가치를 지니고 있다. 특히 형상 기억 고분자의 방열 성능, 전기 전도 성능, 물리적 성능, 광학 성능 등은 다양한 충전제를 도입함으로써 향상될 수 있다. 본 논문에서는 형상 기억 고분자의 기본 원리 및 최근의 형상 기억 고분자 나노 복합재료에 대해 알아본다.

Keywords

References

  1. J. Su, Q. M. Zhang, and R. Y. Ting, "Space-Charge-Enhanced Electromechanical Response in Thin-Film Polyurethane Elastomers", Appl. Phys. Lett., 71, 386 (1997). https://doi.org/10.1063/1.119545
  2. R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, "High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%", Science, 287, 836 (2000). https://doi.org/10.1126/science.287.5454.836
  3. R. E. Pelrine, R. D. Kornbluh, and J. P. Joseph, "Electrostriction of Polymer Dielectrics with Compliant Electrodes as a Means of Actuation", Sensors Actuat. A-Phys., 64, 77 (1998). https://doi.org/10.1016/S0924-4247(97)01657-9
  4. W. Lehmann, H. Skupin, C. Tolksdorf, E. Gebhard, R. Zental, P. Kruger, M. Losche, and F. Kremer., "Giant Lateral Electrostriction in Ferroelectric Liquid-Crystalline Elastomers", Nature, 410, 447 (2001). https://doi.org/10.1038/35068522
  5. M. Warner, E. M. Terentjev, and Liquid Crystals Elastomers, Oxford University Press, New York, 2003.
  6. V. A. Beloshenko, V. N. Varyukhin, and Y. V. Vozntak, "The Shape Memory Effect in Polymers", Russ. Chem. Rev., 74, 265 (2005). https://doi.org/10.1070/RC2005v074n03ABEH000876
  7. C. Liu, H. Qin, and P. T. Mather, "Review of Progress in Shape-Memory Polymers", J. Mater. Chem., 17, 1543 (2007). https://doi.org/10.1039/b615954k
  8. A. LendLein and S. Kelch, "Shape-Memory Polymers", Angew. Chem. Int. Ed., 41, 2034 (2002). https://doi.org/10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
  9. A. Lendlein, A. M. Schmidt, and R. Langer, "AB-Polymer Networks Based on Oligo($\varepsilon$-Caprolactone) Segment Showing Shape-Memory Properties", Proc. Natl. Acad. Sci. USA, 98, 842 (2001). https://doi.org/10.1073/pnas.031571398
  10. J. E. Mark, "Rubber Elasticity", J. Chem. Educ., 58, 898 (1981). https://doi.org/10.1021/ed058p898
  11. B. Dietsch and T. Tong, "A Review-Features and Benefits of Shape Memory Polymers (SMPs)", J. Adv. Mater.-Covina, 39, 3 (2007)
  12. D. Ranta and J. Karger-Kocsis, "Recent Advances in Shape Memory Polymers and Composites: a Review", J. Mater. Sci., 43, 254 (2008). https://doi.org/10.1007/s10853-007-2176-7
  13. Y. Liu, K. Gall, M. L. Dunn, and P. McCluskey, "Thermomechanical Recovery Couplings of Shape Memory Polymers in Flexure", Smart Mater. Struct., 12, 947 (2003). https://doi.org/10.1088/0964-1726/12/6/012
  14. M. Y. Razzaq and L. Frormann, "Thermomechanical Studies of Aluminum Nitride Filled Shape Memory Polymer Composites", Polym. Compos., 28, 287 (2007). https://doi.org/10.1002/pc.20283
  15. M. Y. Razzaq and L. Frormann, "Thermochemical Studies of Aluminium Nitride Filled Shape Memory Polymer Composites", Polym. Compos., 28, 287 (2007). https://doi.org/10.1002/pc.20283
  16. C. Liu and P. T. Mather, "A Shape Memory Polymer with Improved Shape Recovery", Paper presented at the materials research society symposium proceedings. Mechanically active materials, MRS fall meeting, November 29-December 3 2004, Boston, MA, United States.
  17. C. S. Zhang and Q. Q. Nib, "Bending Behavior of Shape Memory Polymer Based Laminates", Compos. Struct., 78, 153 (2007). https://doi.org/10.1016/j.compstruct.2005.08.029
  18. C. Liang, C. A. Rogers, and E. Malafeew, "Investigation of Shape Memory Polymers and Their Hybrid Composites", J. Intel. Mat. Syst. Struct., 8, 380 (1997). https://doi.org/10.1177/1045389X9700800411
  19. T. Ohki, Q. Q. Ni, N. Ohsako, Struct M. Iwamoto, "Mechanical and Shape Memory Behavior of Composites with Shape Memory Polymer", Compos. Part A: Appl. Sci. Manuf., 35, 1065 (2004). https://doi.org/10.1016/j.compositesa.2004.03.001
  20. X. Lan, Y. Liu, H. Lv, X. Wang, J. Leng, and S. Du, "Fiber Reinforced Shape-Memory Polymer Composite and Its Application in A Deployable Hinge", Smart. Mater. Struct., 18, 024002 (2009). https://doi.org/10.1088/0964-1726/18/2/024002
  21. J. H. Yang, B. C. Chun, Y. C. Chung, J. W. Cho, and B. G. Cho, "Vibration Control Ability of Multilayered Composite Material Made of Epoxy Beam and Polyurethane Copolymer with Shape Memory Effect", J. Appl. Polym. Sci., 94, 302 (2004). https://doi.org/10.1002/app.20902
  22. F. Li, L. Qi, J. Yang, M. Xu, X. Luo, and D. Ma, "Polyurethane/ Conducting Carbon Black Composites: Structure, Electric Conductivity, Strain Recovery Behavior, and Their Relationships", J. Appl. Polym. Sci., 75, 68 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000103)75:1<68::AID-APP8>3.0.CO;2-I
  23. J. W. Cho and S. H. Lee, "Influence of Silica on Shape Memory Effect and Mechanical Properties of Polyurethane-Silica Hybrids", Eur. Polym. J., 40, 1343 (2004). https://doi.org/10.1016/j.eurpolymj.2004.01.041
  24. J. S. Park, Y. C. Chung, S. D. Lee, J. W. Cho, and B. C. Chun, "Shape Memory Effects of Polyurethane Block Copolymers Cross-Linked by Celite", Fibers Polym., 9, 661 (2008). https://doi.org/10.1007/s12221-008-0104-3
  25. K. Gall, M. L. Dunn, Y. Liu, D. Finch, M. Lake, and N. A. Munshi, "Shape Memory Polymer Nanocomposites", Acta Mater., 50, 5115 (2002). https://doi.org/10.1016/S1359-6454(02)00368-3
  26. I. S. Gunes, F. Cao, and S. C. Jana, "Evaluation of Nanoparticulate Fillers for Development of Shape Memory Polyurethane Nanocomposites", Polymer, 49, 2223 (2008). https://doi.org/10.1016/j.polymer.2008.03.021
  27. V. A. Beloshenko, V. N. Varyukhin, and A. P. Borzenko, "The Shape Memory Effect in Structurally Heterogeneous Polymer Systems", Int. J. High Pressure Res., 22, 589 (2002). https://doi.org/10.1080/08957950212416
  28. V. A. Beloshenko, Y. E. Beygelzimer, A. P. Borzenko, and V. N. Varyukhin, "Shape Memory Effect in the Epoxy Polymer- Thermoexpanded Graphite System", Compos. Part-A, 33, 1001 (2002). https://doi.org/10.1016/S1359-835X(02)00030-1
  29. V. A. Beloshenko, Y. E. Beigelzimer, A. P. Borzenko, and V. N. Varyukhin, "Shape-Memory Effect in Polymer Composites with a Compatible Filler", Mech. Compos. Mater., 39, 255 (2003). https://doi.org/10.1023/A:1024522211390
  30. V. A. Beloshenko, V. N. Varyukhin, and Y. V. Voznyak, "Electrical Properties of Carboncontaining Epoxy Compositions under Shape Memory Effect Realization", Compos. Part-A, 36, 65 (2005). https://doi.org/10.1016/S1359-835X(04)00179-4
  31. V. A. Beloshenko and Y. V. Voznyak. "Shape Memory Effect in the Epoxy Polymer Composites with Aggregated Filler", Polym. Sci. Ser. A, 51, 416 (2009).
  32. I. S. Gunes and S. C. Jana, "Shape Memory Polymers and Their Nanocomposites: AReview of Science and Technology of New Multifunctional Materials", J. Nanosci. Nanotechnol., 8, 1616 (2008). https://doi.org/10.1166/jnn.2008.038
  33. B. Xu, Y. Q. Fu, M. Ahmad, J. K. Luo, W. M. Huang, A. Kraft, R. Reuben, Y. T. Pei, Z. G. Chend, and J. Th. M. De Hossond, "Thermo-Mechanical Properties of Polystyrene-Based Shape Memory Nanocomposites", J. Mater. Chem., 20, 3442 (2010). https://doi.org/10.1039/b923238a
  34. H. Koerner, G. Price, N. A. Pearce, M. Alexander, and R. A. Vaia, "Remotely Actuated Polymer Nanocomposites-Stress- Recovery of Carbon-Nanotube-Filled Thermoplastic Elastomers", Nat. Mater., 3, 115 (2004). https://doi.org/10.1038/nmat1059
  35. I. H. Paik, N. S. Goo, K. J. Yoon, Y. C. Jung, and J. W. Cho, "Electric Resistance Property of a Conducting Shape Memory Polyurethane Actuator", Key Eng. Mater., 297, 1539 (2005).
  36. J. W. Cho, J. W. Kim, Y. C. Jung, and N. S. Goo, "Electroactive Shape-Memory Polyurethane Composites Incorporating Carbon Nanotubes", Macromol. Rapid Commun., 26, 412 (2005). https://doi.org/10.1002/marc.200400492
  37. O. H. Meng, J. L. Hu, and S. Mondal, "Thermal Sensitive Shape Recovery and Mass Transfer Properties of Polyurethane/Modified MWNT Composite Membranes Synthesized via In Situ Solution Pre-Polymerization", J. Membrane Sci., 319, 102 (2008). https://doi.org/10.1016/j.memsci.2008.03.032
  38. N. G. Sahoo, Y. C. Jung, H. J. Yoo, and J. W. Cho, "Influence of Carbon Nanotubes and Polypyrrole on the Thermal, Mechanical and Electroactive Shape-Memory Properties of Polyurethane Nanocomposites", Compos. Sci. Technol., 67, 1920 (2007). https://doi.org/10.1016/j.compscitech.2006.10.013