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Abstract − In this paper we propose a new type of splines-biquadratic submesh splines over hierarchical T-meshes. The

biquadratic submesh splines are in rational form consisting of some biquadratic B-splines defined over tensor-product

submeshes of a hierarchical T-mesh, where every submesh is around a cell in the crossing-vertex relationship graph of the T-

mesh. We provide an effective algorithm to locate the valid tensor-product submeshes. A local refinement algorithm is

presented and the application of submesh splines in surface fitting is provided.
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1. Introduction

Tensor-product B-spline surfaces are a standard

representation for free-form surfaces in the disciplines

of computer graphics and geometric modeling [5,10].

One of their major weaknesses is that the control points

must lie topologically in a rectangular grid and the local

refinement by knot insertion influences entire rows or

columns of the control points. To overcome this inflexibility,

Forsey and Bartels [7] introduced hierarchical B-splines.

Hierarchical B-splines were also studied by Kraft [9].

They constructed a multilevel spline space which is a

linear span of tensor-product B-splines on different,

hierarchically ordered grid levels.

T-splines, proposed by Sederberg [11,12], are another

innovation in this direction. A T-spline is a type of

point-based spline defined over a T-mesh which is a

rectangular grid that allows T-junctions. T-splines can

eliminate most superfluous control points in NURBS

representation. A T-spline is a piecewise rational

polynomial within each cell of the T-mesh. This fact

makes the local refinement algorithm of T-splines

would extend all partial rows of control points to cross

the entire surface in the worst case. In order to be

compatible with the standard defining fashion, two of

the present authors introduced the concept of spline

spaces over T-meshes [1]. The dimension formula was

proved with the B-net method [1] and the smoothing

cofactor method [8] for the spline space S(m, n, α, β,

) for m 2α + 1 and n 2β + 1. Then in [2] we

provided an approach to define the basis functions of

the C1 continuous bicubic splines over hierarchical T-

meshes and discussed its applications in surface fitting.

In practice, we prefer splines with highest possible

smoothness, e.g. splines in S(m, n, α, β, ). Unfortunately,

there is a lack of theoretic foundations for such spline

spaces. For example, we do not know the dimension

formula for such splines space for m 3. We do not

know how to construct a set of basis functions neither.

In this paper, we propose a new type of splines-submesh

splines, which are defined in term of some tensor-

product B-splines. A submesh spline is a single rational

polynomial within each cell of a T-mesh. Hierarchical

B-splines require a very special hierarchical T-mesh

structure due to its refinement scheme, but a submesh

spline is suitable for any hierarchical T-mesh. Compared

with PHT-splines in [2], submesh splines have higher

order of smoothness and are more adaptable to

applications.

In this paper, we mainly discuss biquadratic submesh

splines over hierarchical T-meshes. In [3] we have

shown that the dimension of biquadratic spline spaces

over hierarchical T-meshes is equal to the cell number

of the corresponding crossing-vertex relationship graph.

According to this conclusion, we can define submesh

functions over valid tensor-product submeshes. The

submesh functions have some good properties, such as

nonnegativity, local support and partition of unity. We

present a local refinement algorithm for submesh splines,

which is achieved by cross insertion, i.e., dividing a cell

into four subcells by inserting a cross. In some situations,

the local refinement requires some additional divided

cells in order to retain the shape of the submesh spline

surfaces. Using submesh splines, surface models can be

constructed adaptively to fit open mesh models with

disk topology. Examples in Section 5 show that our

surface fitting method needs less control points compared

with NURBS and PHT-splines.

This paper is organized as follows. Section 2 recalls

some preliminary knowledge about T-meshes and spline
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spaces over T-meshes, and defines the crossing-vertex

relationship graph of hierarchical T-meshes. Section 3

introduces the biquadratic submesh spline spaces over

hierarchical T-meshes and describes a method to find

valid submeshes. The local refinement algorithm is

provided in Section 4. Section 5 discusses the surface

fitting with the biquadratic submesh splines over hierarchical

T-meshes. Section 6 concludes the paper with a

summary and some future work.

2. Polynomial Splines over T-meshes and
Crossing-vertex Relationship Graph

In this section, we review the definition of T-meshes,

hierarchical T-meshes and splines spaces over T-meshes,

and then introduce the crossing-vertex relationship

graph of hierarchical T-meshes.

2.1 T-meshes and Hierarchical T-meshes
A T-mesh in 2 is basically a rectangular grid that

allows T-junctions. We use the compatible definitions of
vertices, edges, cells with those in [1]. Figure 1 shows a
T-meshin (s, t) parameter space, where si denote s
coordinates, and ti denote t coordinates. Thus, each
vertex has a knot coordinate. For example, P1 has knot
coordinates (s1, t1) and P2 has knot coordinates (s4, t2).
Similarly, we can define edge? knot coordinates and
cell? knot coordinates. For example, ([s0, s2], t4) denotes
the edge L whose two endpoints are (s0, t4) and (s2, t4).
The cell Φ has knot coordinates ([s1, s4], [t1, t2]).

We classify T-vertices into two types: horizontal Tvertices
and vertical T-vertices. In Figure 1, P2 is a vertical T-
vertex, P3 is a horizontal T-vertex. A horizontal/vertical
l-edge is a contiguous line segment which consists of
some horizontal/vertical interior edges and whose two
endpoints are boundary vertices or horizontal/vertical T-
vertices. Obviously, an l-edge is the longest possible line
segment in the T-mesh.

A hierarchical T-mesh [2] is a special type of T-mesh
which has a natural nested structure. It is defined in a
recursive fashion .

Figure 2 illustrates the process of generating a
hierarchical T-mesh. For a hierarchical T-mesh , in
order to emphasis its level structure in some cases, we
denote the T-mesh of level k to be k.

2.2 Spline Spaces over T-meshes
Given a regular T-mesh ,  denotes all the cells in
 and Ω the region occupied by all the cells in . In [1],

the following spline space is defined

S(m, n, α, β, )
  : = {s(x,y) Cα, β(Ω) : s(x,y)⎪φ Pmn φ }

where Pmn is the space of all the polynomials with bi-
degree (m,n), and Cα, β is the space consisting of all the
bivariate functions which are continuous in Ω with order
α along x direction and with order β along y direction. It
follows that S(m, n, α, β, ) is a linear space. It is called
the spline space over T-mesh .

In this paper, we are interested mainly in the spline

space S(2,2,1,1, ), where  is a hierarchical T-mesh.

2.3 Crossing-vertex Relationship Graph
Given a hierarchical T-mesh , we keep all the interior

crossing vertices and the edges connecting them, and

remove all the other vertices and the edges in , then

we can get a new mesh .  is called the Crossing-

vertex Relationship Graph of the hierarchical T-mesh .

Obviously, the crossing-vertex relationship graph is

not a rectangular grid, since there are L-vertices,

hanging edges and hanging vertices in the crossing-

vertex relationship graph. The valence of a vertex can

be 1, 2, 3 and 4. Figure 3 shows the crossing-vertex

relationship graph  of a hierarchical T-mesh , where

there are two cells in , denote as g1 and g2.

3. Biquadratic Submesh Spline Spaces over 
Hierarchical T-meshes

In this section, we first introduce the concept of

submeshes in T-meshes, and then define the biquadratic

∈ ∈ ∀ ∈

Fig. 1. A T-mesh.

Fig. 2. A hierarchical T-mesh.

Fig. 3. A T-mesh  and its crossing-vertex relationship graph .
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submesh spline spaces over hierarchical T-meshes. We

also give a method to find valid biquadratic submeshes.

3.1 Submeshes
Definition 3.1: Given a T-mesh , suppose there are

two knot vectors Sk = [sk
0, sk

1, ..., sk
m + 1], Tk = [tk

0, tk
1, ...,

tk
n + 1] and that satisfy the following conditions:

1) Sk and Tk are in increasing order;

2) For all 0 ≤ i ≤ m + 1, 0 ≤ j ≤ n + 1, (sk
i , [tk

0, tk
n + 1]

and ([sk
0, s

k
m + 1], t

k
j ) are edges of .

Then we say that Sk and Tk define a bi-degree (m,n)

submesh in , denoted as

Mk : S k × Tk = [sk
0, s

k
1, ..., s

k
m + 1] × [tk

0, t
k
1, ..., t

k
n + 1].

In this paper, we assume m = n for simplicity. If a

rectangle with four vertices (s0, t0), (s1, t0), (s0, t1), and

(s1, t1) is a cell of the given T-mesh , then [s0, s1] × [t0,

t1] is a bi-degree (0,0) submesh of . According to the

definition, a bi-degree (2,2)(called biquadratic) submesh

is a tensor-product grid with knot vectors [s0, s1, s2, s3]

and [t0, t1, t2, t3], and it has a center cell ([s1, s2], [t1, t2]).

Generally, two different biquadratic submeshes may have

the same center cell. We will only select one as the valid

biquadratic submesh for a certain center cell.

Definition 3.2: Given a T-mesh , suppose that there

are two different biquadratic submeshes M1: [s
1
0 , s

1
1,

s1
2, s

1
3] × [t10 , t

1
1, t

1
2, t

1
3] and M2:  [s

2
0 , s

2
1, s

2
2, s

2
3] × [t20 , t

2
1, t

2
2,

t23] in . If  s1
1 = s2

1, s
1
2 = s2

2, t
1
1 = t2

1, t
1
2 = t2

2  then we call M1

and M2 are two co-cell submeshes. There are two

relations between two

1) If  s1
0 ≤ s2

0,  s
1
3 ≥ s2

3;  t
1
0 ≤ t20, t

1
3 ≥ t2

3 , then we call  M1

includes M2;

2) If  s1
0 ≤ s2

0,  s
1
3 ≤ s2

3 or s1
0 ≥ s2

0, s
1
3 ≥ s2

3  or t10 ≤ t20, t
1
3 ≤ t2

3

or t10 ≤ t20, t
1
3 ≤ t23  then we call  M1 includes M2:

For two co-cell submeshes M1 and M2, if M1 intersects

M2, then there must be another co-cell submesh M3,

such that both M1 and M2 include M3.

For an arbitrary biquadratic submesh Mk, if there is

no co-cell submesh which includes it, we call Mk a

valid biquadratic submesh.

Figure 4 show the relations of two co-cell submeshes

of the cell φ, M1 is with solid line boundary edges and

M2 is with dashed line boundary edges. In Figure 4. a

M1 includes M2, while in Figure 4.b M1 intersects M2.

3.2 Biquadratic Submesh Spline Spaces over
Hierarchical T-meshes

Now we introduce the concept of the biquadratic

submesh spline spaces over hierarchical T-meshes.

definition 3.3: Given a hierarchical T-mesh , suppose

that the set of all valid biquadratic submeshes in  is

{Mk}
K
k = 1. Define a biquadratic tensor-product B-spline

basis function Nk(s, t) for each Mk. All these Nk(s, t)

expand a linear space, which is defined to be the

biquadratic submesh spline space over hierarchical

where dk (k = 1,2,...,K) are control points, Ω is the

region occupied by all the cells in . For each k  {1, 2,

..., K}, Bk(s,t) is called a submesh function of Mk.

According to the definition above, it is easy to show

that all the submesh functions Bk(s,t) satisfy the

following properties:

1) Bk(s,t) ≥ 0;

2) For any k, Bk(s, t) has compact support;

3) The submesh functions form a partition of unity.

3.3 A Method to Find Valid Submeshes}
In [3], we have proved the dimension formula of

biquadratic spline spaces with smoothness of order one

over hierarchical T-meshes. Given a hierarchical T-

mesh , suppose that F is the number of cells in the the

crossing-vertex relationship graph of . Then dimS

(2,2,1,1, ) =  F. Based on this result, we can find all

valid biquadratic submeshes and define biquadratic

submesh functions.

The main challenge is how to find all valid biquadratic

submeshes in a hierarchical T-mesh. Here we propose a

method to find all the valid biquadratic submeshes. We

construct the crossing-vertex relationship graph  from

the given hierarchical T-mesh . And then we use  to

find all valid biquadratic submeshes in . 

Given a hierarchical T-mesh , we can construct the

crossing-vertex relationship graph  from  level by

level. For example, as shown in Figure 5, the hierarchical

T-mesh  have 3 levels. For the level k (k = 0,1,2), the

corresponding crossing-vertex relationship graph is k.

S s t,( ) dkBk s t,( )  Bk s t,( ),

k 1=

K

∑
Nk s t,( )

Ni s t,( )

k 1=

K

∑

---------------------- s t,( ) Ω∈,= =

∈

Fig. 4. Two biquadratic submeshes with the same center cell φ.
Fig. 5. Construct the crossing-vertex relationship graph  from a
hierarchical T-mesh  .
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Then the crossing-vertex relationship graph of  is k.

Suppose that {gi}
F
i = 1 are all the cells of . For each

cell gi, denote its rectangular bounding box as . We

use { }F
i = 1 to find valid biquadratic submeshes in .

For each , we can find a corresponding rectangle Ti in

, where Ti consists of one or several cells of .

Apparently, the four corner vertices of Ti are all crossing

vertices of mathcal. Suppose that the knot coordinates

of Ti are ([si
1, s

i
2], [t

i
1, t

i
2]), the left, right, bottom and top l-

edges of Ti are l, r, b and t.

In the following, we need four sets Vi, i = 0,1,2,3.

Their initial values are assumed empty. For l, r, b and t,

we delete their interior T-vertices, and reserve the crossing

vertices and two endpoints. Then for every vertex vj in

l, if the horizontal l-edge through vj contains a vertex in

r, we reserve the vertex vj; otherwise we delete the

vertex vj. We denote the set of remainder vertices in l as

Vlr. Analogously, we can get a set Vbt from b. For each t

coordinate tj of element vj in Vlr, if tj > t i
2, push tj back

into V1; if tj < t i
1, push tj back into V3. For each s

coordinate sj of element vj in Vbt, if sj > s i
2, push sj back

into V2; if sj < s i
1, push sj back into V0. Here V0 and V3 is

sorted in descending order for s and t coordinates, V2

and V1 is sorted in ascending order for s and  t coordinates.

With V0, V1, V2 and V3 in hand, we can ascertain the

valid biquadratic submesh for Ti. Find an element of

each Vi, that is s i
0 in V0, s

i
3 in V2, t

i
3  in V3 and t i

3  in V1. If

they form a submesh, then the valid biquadratic submesh

for Ti is [s i
0, s

i
1, s

i
2, s

i
3] times[t i

0, t
i
1, t

i
2, t

i
3]. Otherwise, there

is no valid biquadatic submesh for Ti. The pseudo-code

of the process is shown as in Algorithm 1.

Apparently, it is not always true that for every  in

, one can find a valid biquadratic submesh in . By

the dimension formula S(2, 2, 1, 1, ) = F, the number

of the valid biquadratic submeshes is no bigger than F.

According to Definition 3.2, each center cell has at

most one corresponding valid biquadratic submesh.

Therefore the method of finding all valid biquadratic

submeshes is feasible and reasonable. Then we can

define the biquadratic submesh function Bk(s,t) and the

biquadratic submesh spline according to Definition 3.3.

4. Local Refinement Algorithm

Suppose that the submesh spline space over a T-mesh

is S1, when a cell of the T-mesh is divided by cross

insertion, we can get a submesh spline space S2 over the

new T-mesh. S1 is said to be a subspace of S2 if each

submesh function of S1 can be written as a linear

combination of the submesh functions of S2, denoted by

S1⊂ S2.

Unfortunately, S1⊂ S2 is not always true for an arbitrary

T-mesh, that is, sometimes S1 S2. For example, in

Figure 6, S0⊂ S1, S1 S2, S2⊂ S3. So we should find

other cells for cross insertion to guarantee that S1 is the

subspace of the new submesh spline space. This process

is called the local refinement algorithm.

The local refinement algorithm has two phases: the

topology phase and the geometry phase. The topology

phase identifies which cells should be divided by cross

insertion in addition to the ones requested. The control

points can be computed using the linear transformation

in the geometry phase after all required cells are cross

insertion.

We first introduce the topology phase of the algorithm.

Given a hierarchial T-mesh , its crossing-vertex relationship

graph is . Expand all cells of  to rectangular cells, denoted

as = . For each , its corresponding

rectangle in  is Ti. We regard Ti as a center cell ([s i
1,

s i
2],[t

i
1, t

i
2]), then find a valid biquadratic submesh in .

If there is no biquadratic submesh for the cell , we

should divide other cells in  by cross insertion. Denoted

the left, right, bottom and top l-edges of Ti as l, r, b and

g̃i

g̃i

g̃i

g̃i

⊄

⊄

˜ g
i

˜ i 1 2 … F, , ,={ } gi˜

gi˜

Fig. 6. Nested sequence of submesh spline spaces.
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t. Ti is contained in a cell φ j of  at level k. Here there

are four possible violations and at least one happens to Ti: 

· Violation 1 On the left of Ti, we can not find the s

coordinates s i
0 to compose a  valid submesh of Ti; 

· Violation 2 On the right of Ti, we can not find the s

coordinates s i
3 to compose a valid submesh of Ti;

· Violation 3 On the bottom of Ti, we can not find the

t coordinates t i
0 to compose a valid submesh of Ti;

· Violation 4  On the top of Ti, we can not find the t

coordinates t i
3  to compose a valid submesh of Ti.

If no violation exists, the submesh spline is valid. If

violations do exist, we resolve them one by one as

following:

· Rule 1 Select the nearest non-crossing cell at level  k

on the left of φj for cross insertion;

· Rule 2 Select the nearest non-crossing cell at level k

on the right of φj for cross insertion;

· Rule 3 Select the nearest non-crossing cell at level k

on the bottom of φj for cross insertion;

· Rule 4 Select the nearest non-crossing cell at level k

on the top of φj for cross insertion.

In conclusion, the topology phase of the local refinement

algorithm consists of the following steps:

1) Divide all the desired cells by cross insertion in ,

and construct the crossing-vertex relationship graph ;

2) Expand all the cells of  to rectangular cells to get

. If any cell of  have no corresponding valid biquadratic

submesh in , apply Rule 1, 2, 3, and 4 for the cell. Then

reconstruct the crossing-vertex relationship graph ; 

3) Repeat Step 2 until all cells of  have their

corresponding biquadratic valid submeshes in .

Now we explain the geometry phase of the local

refinement algorithm. Given a submesh spline P(s,t)

S1, its column vector of control points is P. Given another

submesh spline Q(s,t) S2, its column vector of control

points is Q. Suppose that P(s,t) Q(s,t) and

Since S1 ⊂ S2, each Bi(s,t) can be written as a linear

combination of the (s,t): Bi(s,t) =

So, there is a linear transformation that maps P into

Q: H1,2 P = Q,  where the element at row j and column i

of H1,2 is .

We illustrate the refinement algorithm with an

example. Figure 6.b shows an initial T-mesh, its

submesh spline space is S1. When we divide a cell by

cross insertion as shown in Figure 6.c, the new submesh

spline space is S2, S1 S2. According to the algorithm,

we must cross insert other cells, and get the new T-

mesh as shows in Figure 6.d whose submesh spline

space is S3. Then we have S1  S3.

5. Surface Fitting

Surface fitting is one of the most important research

topics in computer graphics and geometric modeling.

This section presents an adaptive scheme to fit open

mesh models with disk topology with biquadratic

submesh splines over hierarchical T-meshes.

Given an open mesh model in 3D space with disk

topology, suppose the vertices are Pi(i = 1,2,...,N). Using

some parametrization method [6], we can obtain their

corresponding parameter values (si, ti), i = 1,2,...,N in a

rectangular region. For simplicity, the parameter region

is assumed to be [0,1] × [0,1]. The surface fitting

scheme can be described as follows:

1) Let the initial T-mesh 0 be a tensor-product

mesh, and the initial submesh spline surface S0 be the

tensor-product B-spline surface defined over 0. Suppose

that the fitting tolerance is ε > 0, and set k = 0;

2) Compute the fitting error in each cell at level k,

and mark the cells whose fitting errors are larger than ε;

3) If no cell is marked, Sk is the final submesh spline

surface, and return Sk; else, subdivide all marked cells,

and obtain a new T-mesh of level k + 1, denoted as k.

Then according to the local refinement algorithm, subdivide

some necessary cells of level k in  k to obtain the level

k + 1 T-mesh k + 1;

4) Find out all valid biquadratic submeshes in k + 1,

define a biquadratic tensor-product B-spline basis

function for each valid submesh, and compute the

submesh functions of level k + 1;

∈

∈

≡

P s t,( ) piBi s t,( )      Q qjB̃j s t,( ).

j 1=

K

∑=,

i 1=

K

∑=

B̃j ci
 j
B̃j s t,( )

j 1=

K

∑

ci
 j

⊄

⊂

˜

˜

Fig. 7. Three examples of fitting closed meshes.
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5) Use the least-squares method to compute the control

points at level k + 1 to get the submesh spline surface

Sk + 1. Set k = k + 1 , return to Step 2.

Here the fitting error in a cell θ is ideally defined to be

where P(u,v) is the parametric equation of the mesh

model. In practice, the fitting error is calculated as the

maximum of  for some sample points

(ui,vi) in θ.

We provide three examples to illustrate the surface

fitting scheme in Figure 7. In all these examples, the initial

T-meshes are square [0,1] × [0,1], and the parameterizations

are obtained with the discrete harmonic mappings proposed

by [4]. The tolerance of the fitting error is ε = 1%,

which refers to the size of the bounding box of the

corresponding model. The computation is performed on

a PC with Intel Pentium 4 CPU 3.20 GHZ and 1.0 GB

RAM. Table 1 shows the computational time and other

information for the three examples, where CP stands for

control points. The last column shows the number of

control points when fitting with PHT-splines.

6. Computation time for fitting open meshes

This paper introduces a new type of splines- submesh

splines over hierarchical T-meshes, and specifically we

studied biquadratic submesh splines. First we define

valid submeshes and introduce a method to find valid

submeshes. Then the local refinement algorithm is proposed.

With the submesh splines over hierarchical T-meshes,

an adaptively surface fitting scheme is presented as well.

There are still some interesting research problems

about the submesh splines over hierarchical T-meshes.

The natural problems are whether the set of submesh

functions is linear independence and how to construct

the basis functions of the spline space S(2,2,1,1, )?

Besides, how to handle surfaces with general topologies?

These are problems worthy of further research.
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Table 1. Computation time for fitting open meshes

Mesh #points #levels #time(sec.) #CP #CP/PHT

Female head 19231 10 8.93 2163 4432

Igea artifact 46313 6 40.71 5580 17744

Gargoyle 74721 13 132.45 8309 35764
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