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A Nonparametric Approach for Noisy Point Data Preprocessing
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Abstract − 3D point data acquired from laser scan or stereo vision can be quite noisy. A preprocessing step is often needed
before a surface reconstruction algorithm can be applied. In this paper, we propose a nonparametric approach for noisy point
data preprocessing. In particular, we proposed an anisotropic kernel based nonparametric density estimation method for
outlier removal, and a hill-climbing line search approach for projecting data points onto the real surface boundary. Our
approach is simple, robust and efficient. We demonstrate our method on both real and synthetic point datasets.
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 1. Introduction

Despite significant advancement in interactive shape

modeling, creating realistic looking 3D models from scratch

is still a very challenging task. Recent advancement in 3D

shape acquisition systems such as laser range scanner,

structural light system and stereo vision system have

made direct 3D data acquisition feasible [Seitz 2006].

The obtained point dataset however can be quite noisy.

Without preprocessing to deal with noisy data, parametric

and/or variational formulations [Hoppe 1992, Bajaj

1995, Curless 1996, Hilton 1998, Whitaker 1997, Zhao

2000, Zhao 2001, Carr 2001, Ohtake 2003, Xie 2003, Levin

2003, Alexa 2003] are usually used. These methods

generally composed of both a fitting term for the data

and a regularization term for the reconstructed surface.

Since all data points, even outliers, are treated equally

and can affect the final reconstruction, these approaches

will likely fail for highly noisy data.

Another type of algorithms is based on popular

computational geometry algorithms such as Delaunay

triangulations and Voronoi diagrams to construct triangulated

surfaces [Amenta 1998a, Amenta 1998b, Amenta 1999,

Edelsbrunner 1998, Boissonnat 1984]. For this kind of

method, it is challenging to find the right connections

among all data points in three and higher dimensions,

especially for noisy data.

Recently, Medioni et al. proposed the tensor voting

method [Medioni 2000], which is a nice feature extraction

algorithm. By designing an appropriate voting procedure

among all data points, a tensor field and an associated

saliency field can be constructed. Coherent geometric

information can be extracted from the tensor field and

the saliency field. However, tensor voting method is

computationally very expensive. 

In this paper, we propose a nonparametric approach

for noisy point data preprocessing. In particular, we

proposed an anisotropic kernel based nonparametric

density estimation method for outlier removal, and a

hill-climbing line search approach for projecting data

points onto the real surface boundary. Our approach is

simple, robust and efficient. We demonstrate our

method on both real and synthetic point datasets.

2. Algorithm

Parzen-window based kernel density estimation

Points outside the object surface are outliers that have

to be removed. Since the real object surface is unknown, it

is hard to specify a general criterion to detect outliers.

In this paper, we propose to employ parzen-window

based nonparametric density estimation method for

outlier removal.

Parzen window based kernel density estimation is the

most popular nonparametric density estimation method.

In order to make the paper self-contained, we will

briefly review the Parzen window method in the following.

For a complete description, please refer to the book by

Duda et al. [Duda 2000].

Given n data points xi, i = 1, …, n in the d-dimensional

Euclidean space Rd, the multivariate kernel density

estimate obtained with kernel K(x) and window radius

h, computed in the point x is defined as:
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Without loss of generality, let’s assume h = 1 from

now on, so we could simplify Equation (1) as:

(2)

K(x) is generally a spherically symmetric kernel

function satisfying:

= Ck,d k(||x||2) (3)

where k(x) is the profile function of the kernel K(x).

Ck,d is the normalizing constant such that

(4)

and

, (5)

||x|| is the L2 norm (i.e. Euclidean distance metric) of

the d-dimensional vector x. Employing the profile function

notation, Equation (2) can be further rewritten as

||x − xi|| (6)

There are three types of commonly used spherical

kernel functions K(x): the Epanechnikov kernel, the

uniform kernel, and the Gaussian kernel. The Epanechnikov

kernel is defined by the profile function kE(x):

(7)

The uniform kernel is defined by the profile function kU(x):

(8)

The Gaussian kernel is defined by the profile function

kN(x):

(9)

2.2 Outlier removal by anisotropic ellipsoidal kernel
For 3D point cloud obtained by laser scan or stereo

vision, the outliers tend to spread in the space randomly,

while “real” (we use a quotation here to emphasize the

fact that the real surface is unknown) surface points will

spread along a thin shell which encloses the real surface

object. In other words, the distribution of the outliers is

relatively isotropic, while the distribution of the real

surface points is rather anisotropic. Hence in this paper,

we propose to employ an anisotropic ellipsoidal kernel

based density estimation method for outlier removal.

For anisotropic kernel, the L2 norm ||x-xi|| in Equation

(6), which measures the Euclidean distance metric

between two points x and xi will be replaced by the

Mahalanobis distance metric ||x − xi||M :

||x − xi||M = , (10)

here H is the covariance matrix defined as:

H = DDT (11)

and 

D = (x1− x, x2− x, … , xn− x). (12)

Geometrically, =1 is a three-dimensional

ellipsoid centered at x, with its shape and orientation

defined by H. Using Single Value Decomposition (SVD),

the covariance matrix H can be further decomposed as:

H = UAUT (13)

with

(14)

 are the three eigenvalues of the matrix H,

and U is an orthonormal matrix whose columns are the

eigenvectors of matrix H. We will detail the SVD-based

decomposition (Equation (13)) of the covariance matrix

H in the Appendix. 

To compute the anisotropic kernel based density, we

will apply an ellipsoidal kernel E of equal size and

shape on all the data points. The orientation of the

ellipsoidal kernel E will be determined locally. More

specifically, given a point x, we will calculate its

covariance matrix H by points located in its local

spherical neighborhood of a fixed radius. Without loss

of generality, we will assume the radius is 1 (which can

be done by normalizing the data by the radius). The U

matrix of Equation (13) calculated by the covariance

analysis is kept unchanged to maintain the orientation

of the ellipsoid. The size and shape of the ellipsoid will

be modified to be the same as the ellipsoidal kernel E

by modifying the diagonal matrix A as:

(15)
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r is half of the length of the minimum axis of the

ellipsoidal kernel E. After the density value is estimated,

we will remove all the points whose estimated density

value is smaller than a user-defined threshold. Figure 1

and Figure 2 are two examples of the proposed nonparametric

density estimation based outlier removal from synthetic

highly noisy data. The input of Figure 4 is a 3D point

clouds obtained from multi-view stereo. Figure 4(a) is

the original data; Figure 4(b) is the result after outlier

removal. Figure 3 is a 2D slice view of the nonparametric

data preprocessing process. In particular, Figure 3(a) is

Fig. 1. (a) The Stanford bunny (35678 points) with 1000% noise
points added in; (b) Result after outlier removal.

Fig. 2. (a) A synthetic torus point data (4800 points) which has an
open hole in top, with 1000% noise points added in; (b) Result
after outlier removal.

Fig. 3. A 2D slice view of the nonparametric data preprocessing process. (a) a 2D slice of the original 3D data of Figure 4(a); (b) color-coded
density map of (a) estimated by an isotropic Gaussian kernel, with red represents the highest density and blue the lowest density; (c) color-
coded density map of (a) estimated by an anisotropic Gaussian kernel of the same scale of (b); (d) after outlier removal using (b); (e) after
outlier removal using (c); (f) color-coded density map of (e) estimated by an anisotropic Gaussian kernel of a smaller scale than (c); (g) result
of projecting points of (e) by line search based on (f).
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a 2D slice of the original 3D data of Figure 4(a); Figure

3(b) is the color-coded density map of Figure 3(a)

estimated by an isotropic Gaussian kernel, with red

represents the highest density and blue the lowest density;

Figure 3(c) is the color-coded density map of Figure

3(a) estimated by an anisotropic Gaussian kernel of the

same scale of Figure 3(b); Figure 3(d) is the result after

outlier removal using Figure 3(b), and Figure 3(e) is the

result after outlier removal using Figure 3(c). As we can

see, better result is achieved by using the anisotropic kernel-

based outlier removal (Figure 3(e)), comparing with the

isotropic kernel-based outlier removal (Figure 3(d)).

2.3 Point projection by line search
After the outlier removal step, we will need to further

process the remaining point data so that they will be

projected into the real surface. We will define the real

surface as the set of points whose density value

(estimated by the above Parzen-window based kernel

density estimation) is maximum along its surface normal

direction. This is similar to the concept of “extreme

surface” as suggested by Amenta et al. [Amenta 2004].

We implement the data projection by a hill-climbing

line search method. More specifically, given a point x, it

will move along a direction l that is (approximately)

orthogonal to the real surface, and will stop when a

local maximum of the density value is reached. Since

the real surface is unknown, the moving direction l is

approximated by the eigenvector u3 (Equation (21)) that

is associated with the smallest eigenvalue σ 2
3 (Equation

(21)) of the covariance matrix H (Equation (11)), calculated

by the local neighbourhood of point x. The orientation

of the moving direction is determined by the directional

derivative of the density value along l, i.e. point x will

always move uphill (i.e. move towards the direction

that will increase the density value). Figure 4(c) shows

the result of projecting data points by line search. A 2D

slice view of the point projection is shown in Figure

3(g). Note that the outlier removal and the point projection

procedure can be iterated one or two times to further

improve the result.

3. Conclusions and Future Work

In this paper, we propose a nonparametric approach

for noisy point data preprocessing. In particular, we

proposed an anisotropic kernel based nonparametric

density estimation for outlier removal, and a hill-climbing

line search approach for projecting data points onto the

real surface boundary. Our method is very robust with

highly noisy dataset, as can be seen from the examples

shown. In addition, our approach is computationally

very efficient. For example, it only takes 3 to 4 minutes

in a middle-range desktop PC to process (outlier removal

and point projection) the mult-view stereo point data

(Figure 4) which contains more than 600,000 points.

The majority of the running time actually spends on

computing the density. The line search based projection

is done in less than 10 seconds for the whole dataset.

The main limitation of our approach is that currently

a fixed bandwidth of the kernel is used across the whole

dataset, which can cause some of the “good” data being

removed during the outlier removal process (as can be

seen in Figure 3(e)). We would like to develop a

scheme that can automatically select the optimal kernel

bandwidth based on the local neighborhood. We would

also like to extend our approach so that it can handle

hole fillings automatically.
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view stereo; (b) after outlier removal; (c) after point projection by
line search.
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5. Appendix: Decomposition of the Covariance 
Matrix H

Since the covariance matrix H is defined as: H = DDT

and D = (x1− x, x2− x, …, xn− x). Using Single Value

Decomposition (SVD), D can be decomposed as:

D = UΣVT (16)

Σ is the diagonal matrix:

(17)

with . U and V are orthonormal matrixes, i.e.

UTU = VTV = I is the identity matrix. So, 

(18)

and let’s define matrix A as:

(19)

which is also a diagonal matrix. Thus we have 

(20)

Furthermore, if we denote U = (u1, u2, u3 ), since U is

an orthonormal matrix, we will have 

Hui  =  ui, (21)

which means ui is the eigenvector of H, associated with

its ith largest eigenvalue .
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