스테레오 비전을 이용한 실시간 인간형 로봇 궤적 추출 및 네비게이션

Real-time Humanoid Robot Trajectory Estimation and Navigation with Stereo Vision

  • 박지환 (한국과학기술원 전산학과) ;
  • 조성호 (한국과학기술원 전산학과)
  • 투고 : 2010.02.02
  • 심사 : 2010.06.09
  • 발행 : 2010.08.15

초록

스테레오 카메라를 갖춘 인간형 로봇이 자율적으로 주변 상황을 인지하면서 목적지까지의 경로를 실시간으로 생성 및 수정하는 간단한 알고리즘을 제시한다. 특징점들을 시각적 이미지에서 추출함으로써 주위의 장애물들을 인지한다. 인간형 로봇의 뒤뚱거리는 보행 움직임을 모델링함으로써 로봇의 중심부 기준에서의 실제 경로를 유추하여 계획된 경로와 비교함으로써 시각적 피드백 제어를 구현하고 성공적인 네비게이션을 수행한다. 실제 인간형 로봇의 네비게이션 실험을 통해 제안된 알고리즘의 가능성을 입증한다.

This paper presents algorithms for real-time navigation of a humanoid robot with a stereo vision but no other sensors. Using the algorithms, a robot can recognize its 3D environment by retrieving SIFT features from images, estimate its position through the Kalman filter, and plan its path to reach a destination avoiding obstacles. Our approach focuses on estimating the robot’s central walking path trajectory rather than its actual walking motion by using an approximate model. This strategy makes it possible to apply mobile robot localization approaches to humanoid robot localization. Simple collision free path planning and motion control enable the autonomous robot navigation. Experimental results demonstrate the feasibility of our approach.

키워드

참고문헌

  1. G.N. DeSouza and A.C. Kak, "Vision for mobile robot navigation: a survey," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.24, no.2, pp.237-267, Feb. 2002. https://doi.org/10.1109/34.982903
  2. K. Sabe, M. Fukuchi, J.-S. Gutmann, T. Ohashi, K. Kawamoto, and T. Yoshigahara, "Obstacle avoidance and path planning for humanoid robots using stereo vision," in Int. Conf. on Robotics and Automation, New Orleans, USA, vol.1, pp.592-597, 2004.
  3. J. -S. Gutmann, M. Fukuchi, and M. Fujita. "Real-time path planning for humanoid robot navigation," in Proc. of Int. Joint Conf. on Artificial Intelligence, Edinburgh, Scotland, pp.1232-1237, 2005.
  4. S. Thompson and S. Kagami, "Humanoid robot localization using stereo vision," in Proc. IEEE Int. Conf. on Humanoid Robots, Tsukuba, Japan, pp.19-25, 2005.
  5. Y. Takaoka, Y. Kida, S. Kagami, H. Mizoguchi, and T. Kanade, "3D map building for a humanoid robot by using visual odometry," in Proc. of the IEEE Int. Conf. on Systems, Man & Cybernetics, Paris, France, pp.4444-4449, 2004.
  6. D. G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, vol.60, pp.91-110, 2004.
  7. N. Sunderhauf and P. Protzel, "Stereo odometry - a review of approaches," Technical report, Chemnitz University of Technology, 2007.
  8. S. Umeyama, "Least-squares estimation of transformation parameters between two point patterns," IEEE Trans. on Pattern Analysis Machine Intelligence, vol.PAMI-13, no.4, pp.376-380, 1991.
  9. G. Welch, and G. Bishop, "An Introduction to the Kalman Filter," Dept. of Computer Science, Univ. of North Carolina at Chapel Hill. TR-95-041, 1995.
  10. C. Wu, SiftGPU: A GPU Implementation of David Lowe's Scale Invariant Feature Transform (SIFT). Available: http://cs.unc.edu/ -ccwu/siftgpu/.