$\gamma$-plane 사파이어 기판 위에 성장한 무분극 ${alpha}$-plane GaN 층의 전기적 비등방성 연구

A Study of Electrical Anisotropy of n-type a-plane GaN films grown on $\gamma$-plane Sapphire Substrates

  • 김재범 (고려대학교 전자전기전파공학부) ;
  • 김동호 (고려대학교 전자전기전파공학부) ;
  • 황성민 (고려대학교 전자전기전파공학부) ;
  • 김태근 (고려대학교 전자부품연구원)
  • Kim, Jae-Bum (School of Electronics and Electrical Engineering, Korea University) ;
  • Kim, Dong-Ho (School of Electronics and Electrical Engineering, Korea University) ;
  • Hwang, Sung-Min (School of Electronics and Electrical Engineering, Korea University) ;
  • Kim, Tae-Geun (Korea Electronics Technology Institute)
  • 투고 : 2010.03.22
  • 심사 : 2010.07.01
  • 발행 : 2010.08.25

초록

본 논문에서는 무분극 GaN층에서 관찰되는 성장축의 방향성에 따른 전기적 비등방성에 대한 연구를 수행하였다. 본 연구를 위해 $\gamma$-plane 사파이어 기판 상에 유기화학기상증착법 (Metal-organic chemical vapor deposition)을 이용하여 600 nm 두께의 ${\alpha}$-plane n-type GaN층을 성장시킨 후, Ti/Al/Ni/Au (20 nm/ 150 nm/ 30 nm/ 100 nm) 오믹 전극을 증착하여 transfer length method (TLM)로 접촉저항을 측정하였다. 그 결과, ${\alpha}$-plane GaN층이 갖는 축의 방향성에 의한 접촉저항이 차이는 없는 것을 확인하였고, 면저항 측정 시에는 m-축 방향에 비해 c-축 방향에서 발생하는 면저항 값이 약 25%~75% 정도 크게 발생하는 것을 확인할 수 있었다. 이러한 전기적 특성의 비등방성은 c-축 성장방향에 대해 수직방향을 갖는 기저적층결함 (basal stacking faults)의 생성으로 인한 전자들의 거동 저하에 의한 것으로 사료된다.

We report on the electrical properties of Ti/Al/Ni/Au (20 nm/ 150 nm/ 30 nm/ 100 nm) Ohmic contacts and the anisotropic conductivity of n-type ${\alpha}$-plane ([11-20]) GaN grown on $\gamma$-plane ([1-102]) sapphire substrates. The Ti/Al/Ni/Au Ohmic contacts and their sheet resistances are characterized by using the transfer length method (TLM) as a function of azimuthal angles. It is found that the specific contact resistance does not depend on the axis orientation and there are significant electrical anisotropy in ${\alpha}$-plane GaN films on $\gamma$-plane sapphire substrates, and the sheet resistance varies with azimuthal angles. The sheet resistance values in the direction parallel to m-axis [1-100] are 25% ~ 75% lower than those parallel to c-axis [0001] directions. Thus, Basal stacking faults (BSFs) are offered as a feasible source of the anisotropic mobility in defected m-axis direction because the band-edge discontinuities owing to the differential band gap structure.

키워드

참고문헌

  1. F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Phys. Rev. B, Vol.56, p.p. R10024–R10027, 1997.
  2. C. Chen, V. Adivararahan, J. Yang, M. Shatalov, E. Kuokstis and M. Asif Khan, "Ultraviolet Light Emitting Diodes Using Non-Polar a-Plane GaN-AlGaN Multiple Quantum Wells," Jpn. J.Appl. Phys., Vol. 42, p.p. L1039-L1040, 2003. https://doi.org/10.1143/JJAP.42.L1039
  3. D. Iida, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, "Activation energy of Mg in a-plane $Ga_{1}-_{x}In_{x}N$ (0 https://doi.org/10.1002/pssb.200880826
  4. S. Chevtchenko, X. Ni, Q. Fan, A. A. Baski, and H. Morkoc, "Surface band bending of a-plane GaN studied by scanning Kelvin probe microscopy," Appl. Phys. Lett., Vol. 88, p.p. 122104-122107, 2006. https://doi.org/10.1063/1.2188589
  5. M. McLaurin, T. E. Mates, F. Wu, and J. S. Speck, "Growth of p-type and n-type m-plane GaN by molecular beam epitaxy," J. Appl. Phys. Vol. 100, p.p. 063707-063714, 2006. https://doi.org/10.1063/1.2338602
  6. M. McLaurin, and J. S. Speck, "p-type conduction in stacking-fault-free m-plane GaN," physica status solidi-Rapid Research Letters (RRL), Vol. 1, No. 3, p.p. 110-112, 2007. https://doi.org/10.1002/pssr.200701041
  7. M. Mclaurin, T. E. Mates, and J. S. Speck,"Molecular-beam epitaxy of p-type m-planeGaN," Appl. Phys. Lett., Vol. 86, p.p. 262104-262107, 2005. https://doi.org/10.1063/1.1977204
  8. Gregory S. Marlow, and Mukunda B. Das, "The effects of contact size and non-zero metal resistance on the determination of specific contact resistance,: Solid-state Electronics, Vol. 25, p.p. 91-94, 1982. https://doi.org/10.1016/0038-1101(82)90036-3
  9. J. S. Foresi, and T. D. Moustakas, "Allelectronic generation of 880 fs, 3.5 V shockwaves and their application to a 3 THz free‐space signal generation system," Appl. Phys. Lett., Vol. 62, p.p. 22-25, 1993. https://doi.org/10.1063/1.108806
  10. Y.-L. Wang, F. Ren, U. Zhang, Q. Sun, C. D. Yerino, T. S. Ko, Y. S. Cho, I. H. Lee, J. Han, and S. J. Pearton, "Improved hydrogen detection sensitivity in N-polar GaN Schottky diodes," Appl. Phys. Lett., Vol. 94, p.p. 212108-212111, 2009. https://doi.org/10.1063/1.3148369
  11. D. K. Schroder, "Semiconductor Material and Device Characterization", (Wiley and Sons, NY 1990).
  12. D. N. Zakharov, and Z. Liliental-Weber, "Structural TEM study of nonpolar a-plane gallium nitride grown on (1120) 4H-SiC by organometallic vapor phase epitaxy," Phys. Rev. B, 71, p.p. 235334-235343, 2005. https://doi.org/10.1103/PhysRevB.71.235334