DOI QR코드

DOI QR Code

Experimental Study of Characteristics of Three-Ring Impedance Meter and Dependence of Characteristics on Electric Conductivity of Fluids

3-ring 임피던스미터의 유체 전기 전도도 독립성에 대한 실험적 연구

  • Received : 2010.06.09
  • Accepted : 2010.09.09
  • Published : 2010.11.01

Abstract

A two-phase (gas-liquid) flow is a common phenomenon in fluidic systems, e.g., fluidic systems in the electro-magnetic or nuclear power generation industry and in the steel industry. The measurement of a two-phase flow is important for guaranteeing the safety of the system and for achieving the desired performance. The measurement of the void fraction, which is one of the parameters of the two-phase flow that determines the pressure drop and heat transfer coefficient, is very important. The time resolution achieved by employing the impedance method that can be used to calculate the void fraction from the impedance of the fluid is high because the electric characteristics are taken into account. Therefore, this method can be employed to accurately measure the void fraction without distortion of flow in real time by placing electrodes on the walls of the tubes. Coney analytically studied a ring-type impedance meter, which can be employed in a circular tube. The aim of this study is to experimentally verify the robustness of a three-ring impedance meter to variations in the electric conductivity of the fluid; this robustness was suggested by Coney but was not experimentally verified.

2상유동(기체-액체) 현상은 전자기발전, 원자력발전, 철강산업 등 유체 시스템에 자주 나타나는 현상으로, 2상유동을 파악하는 것은 유체 시스템의 안정성 및 성능을 위해 중요하다. 2상유동 특성 중 기공률은 압력강하와 열전달 성능을 결정하는 주요 인자로서 이를 측정하는 기술이 특히 중요하다. 유동의 임피던스를 측정하여 기공률을 산정하는 임피던스법은 전기적 특성을 이용하기 때문에 반응속도가 빨라 실시간 측정이 가능하며, 유동관 벽에 전극을 설치할 경우 유동 교란없이 측정할 수 있는 장점이 있다. Coney는 원형관에 적용할 수 있는 ring 임피던스미터를 이론적 연구하였다. 본 연구에서는 Coney가 이론적으로 제안하고 실험적으로 검증하지 못한 3-ring 임피던스미터의 유체 전기전도도에 대한 독립성을 실험적으로 검증하였다.

Keywords

References

  1. Coney, M.W.E., 1973, "The Theory and Application of Conductance Probes for the Measurement of Liquid Film Thickness in Two Phase Flow," J. Phys. E: Scient. Instrum. 6, pp. 903-910. https://doi.org/10.1088/0022-3735/6/9/030
  2. Asali, J.C., Hanratty, T.J. and Andreussi, P., 1985, "Interfacial Drag and Film Height for Vertical Annular Flow," AIChE J. 31, pp. 895-902. https://doi.org/10.1002/aic.690310604
  3. Andreussi, P., Di Donfrancesco, A. and Messia, M., 1988, "An Impedance Method for the Measurement of Liquid Hold-Up in Two Phase Flow," Int. J. Multiphase Flow 14, pp. 777-785. https://doi.org/10.1016/0301-9322(88)90074-2
  4. Tsochatzidis, N.A., Karapantios, T.D., Kostoglou, M.V. and Karabelas, A.J., 1992, "A Conductance Method for Measuring Liquid Fraction in Pipes and Packed Beds," Int. J. Multiphase Flow 5, pp. 653-667.
  5. Fossa, M., 1998, "Design and Performance of a Conductance Probe for Measuring the Liquid Fraction in Two-Phase Gas-Liquid Flows," Flow Measurement and Instrumentation 9, pp. 103-109. https://doi.org/10.1016/S0955-5986(98)00011-9
  6. Abramowitz M. and Stegun I.A., 1964, Handbook of Mathematical Functions, Dover, New York.