DOI QR코드

DOI QR Code

Prediction of Lift Performance of Automotive Glass Using Finite Element Analysis

유한요소해석을 통한 자동차용 글라스의 승강성능 예측

  • Moon, Hyung-Il (Dept. of Mechanical & Biomedical Engineering, Kangwon National University) ;
  • Kim, Heon-Young (Dept. of Mechanical & Biomedical Engineering, Kangwon National University) ;
  • Choi, Cheon (Division of Mechanical/Automotive/HVAC & Plumbing Engineering, Woosong Information College) ;
  • Lee, In-Heok (Analysis consulting part, HANKOOK ESI Co. Ltd.) ;
  • Kim, Do-Hyung (W/S design team, Hwaseung R&A Co. Ltd.)
  • 문형일 (강원대학교 기계의용공학과) ;
  • 김헌영 (강원대학교 기계의용공학과) ;
  • 최천 (우송정보대학 기계/자동차/설비계열) ;
  • 이인혁 (한국 이에스아이) ;
  • 김도형 (화승 R&A)
  • Received : 2010.05.14
  • Accepted : 2010.08.20
  • Published : 2010.11.01

Abstract

The performance of power window system was decided by driving characteristics of the window regulator part and reaction by the glass run. The performance of power window system usually has been predicted by experimental methods. In this paper, an analytical method using the explicit code was suggested to overcome the limit of the experimental methods. The friction coefficient of glass run was obtained by the friction test at various conditions and the Mooney-Rivlin model was used. Also, a mechanism of window regulator consisted of the fast belt system and the slip ring elements. And, we conducted the analysis considering characteristic of a motor and obtained the lifting speed of automotive glass with high reliability

파워 글라스 시스템의 특성은 주로 윈도우 레귤레이터의 거동 특성과 글라스 런에 의한 저항에 의해 결정되며, 시험 결과 분석을 통해 시스템의 성능을 예측한다. 본 논문에서는 시험적인 방법의 한계를 해결하기 위해, 익스플리시트 코드를 사용한 해석적 방법을 제안하였다. 해석 모델에 사용한 글라스 런은 무니-리블린 모델을 사용하여 모델링 하였고, 다양한 조건에서의 마찰 시험을 실시하여 마찰계수를 구하였다. 또한, 윈도우 레귤레이터 파트의 메커니즘은 패스트 벨트 시스템과 슬립 링요소를 사용하여 모델링 하였고, 상승 시 발생하는 전류와 하중과의 상관관계 분석을 통해 레귤레이션 메커니즘의 신뢰성을 검증하였고, 모터의 특성을 고려하여 신뢰성 있는 글라스 상승 시간을 예측하였다.

Keywords

References

  1. Shin, D.M. and Lim, S.H., 2002, Car Design, Hyungseul-Sa, Seoul, pp. 189-190.
  2. Lee, K.W., Park, S.C. and Jung, W.W., 2009, “An Experimental Tension Study of the Window Regulator Motor Wire,” Fall conference of KSME, pp. 1397-1400
  3. Kanamori, M., Isomura, Y. and Suzuki, K., 1998, "Dynamic Finite Element Analysis of Window Regulator Linkage System Using LS-DYNA," Trans. of SAE Special Publication, pp. 47-53.
  4. Kim, K.H. and Jeon, S.Y., 2000,“Low-Temperature Drive Characteristics of Automotive Power Window Systems,” Proceedings of the Institution of Mechanical Engineers, Part D, Vo. 214, pp.843-849. https://doi.org/10.1243/0954407001527899
  5. Sameer, M. P. and Pieter, J. M., 2003, “Modeling, Simulating, and Validating a Power Window System Using a Model-Based Design Approach,” The MathWorks, Inc., Miami
  6. Kim, H.W., Jeong, B.H., So, H.C. and Kim, S.T., 2007, “Comparisons of Window Regulator analysis with ADMAS and SimDesigner,” Korea Users Conference of MSC software, Seoul
  7. Jeon, S.G., Hwang, J.H., Na, J.G. and Kim, J.H., 2006, “A Study on Vehicle Window Regulator Motion,” Fall Conference of KSME, pp1-6.
  8. Lee, H. J., 2003, "Window Regulator," Report of Korea Institute of Patent Information, Seoul
  9. Rivlin, R. S., 1948, "Large Elastic Deformations of Isotropic Ⅳ, Further Developments of the General Theory, "Philosophical Transactions of the Royal Society of London., Vol. 241, A, pp. 379-397. https://doi.org/10.1098/rsta.1948.0024
  10. Bathe, K. J., 1996, "Finite Element Procedures," Prentice-Hall, Inc., New Jersey, pp. 485-641.
  11. Kim, S.B., Kim, D.H., and Kim, H.Y., 2005, “Closing Analysis of Automotive Door Seal Using Explicit Code," Spring conf. of KSAE, pp.613-618.
  12. Moon, H.I., Min, B.K., Oh, J.S., Park, J.C., Lee, S.H. and Kim, H.Y., 2008, "Prediction of Door Closing Performance," Conf. of KSAE, pp. 1678-1683.
  13. MARC theory manual

Cited by

  1. Numerical modeling and dynamic simulation of automotive power window system with a single regulator vol.18, pp.5, 2017, https://doi.org/10.1007/s12239-017-0082-9