DOI QR코드

DOI QR Code

The Promotive Effects of Antioxidative Apigenin on the Bioavailability of Paclitaxel for Oral Delivery in Rats

  • Received : 2010.08.14
  • Accepted : 2010.10.12
  • Published : 2010.10.31

Abstract

This study was to investigate the effect of apigenin on the bioavailability of paclitaxel after oral and intravenous administration in rats. The effect of apigenin on P-glycoprotein (P-gp), cytochrome P450 (CYP)3A4 activity was evaluated. The pharmacokinetic parameters of paclitaxel were determined in rats after oral (40 mg/kg) or intravenous (5 mg/kg) administration of paclitaxel with apigenin (0.4, 2 and 8 mg/kg) to rats. Apigenin inhibited CYP3A4 activity with 50% inhibition concentration ($IC_{50}$) of 1.8 ${\mu}M$. In addition, apigenin significantly inhibited P-gp activity. Compared to the control group, apigenin significantly increased the area under the plasma concentration-time curve (AUC, p<0.05 by 2 mg/kg, 59.0% higher; p<0.01 by 8 mg/kg, 87% higher) of oral paclitaxel. Apigenin also significantly (p<0.05 by 2 mg/kg, 37.2% higher; p<0.01 by 8 mg/kg, 59.3% higher) increased the peak plasma concentration ($C_{max}$) of oral paclitaxel. Apigenin significantly increased the terminal half-life ($t_{1/2}$, p<0.05 by 8 mg/kg, 34.5%) of oral paclitaxel. Consequently, the absolute bioavailability (A.B.) of paclitaxel was significantly (p<0.05 by 2 mg/kg, p<0.01 by 8 mg/kg) increased by apigenin compared to that in the control group, and the relative bioavailability (R.B.) of oral paclitaxel was increased by 1.14- to 1.87-fold. The pharmacokinetics of intravenous paclitaxel were not affected by the concurrent use of apigenin in contrast to the oral administration of paclitaxel. Accordingly, the enhanced oral bioavailability by apigenin may be mainly due to increased intestinal absorption caused via P-gp inhibition by apigenin rather than to reduced renal and hepatic elimination of paclitaxel. The increase in the oral bioavailability might be mainly attributed to enhanced absorption in the gastrointestinal tract via the inhibition of P-gp and reduced first-pass metabolism of paclitaxel via the inhibition of the CYP3A subfamily in the small intestine and/or in the liver by apigenin. It appears that the development of oral paclitaxel preparations as a combination therapy is possible, which will be more convenient than the i.v. dosage form.

Keywords

References

  1. Andreeva, M., Niedmann, P. D., Binder, L., Armstrong, V. W., Meden, H., Binder, M. and Oellerich, M. (1997). A simple and reliable reverse-phase high-performance liquid chromatographic procedure for determination of paclitaxel (taxol) in human serum. Ther. Drug. Monit. 19, 327-332. https://doi.org/10.1097/00007691-199706000-00014
  2. Berg, S. L., Tolcher, A., O’Shaughnessy, J. A., Denicoff, A. M., Noone, M., Ognibene, F. P., Cowan, K. H. and Balis, F. M. (1995). Effect of R-verapamil on the pharmacokinetics of paclitaxel in women with breast cancer. J. Clin. Oncol. 13, 2039-2042. https://doi.org/10.1200/JCO.1995.13.8.2039
  3. Cao, X., Gibbs, S. T., Fang, L., Miller, H. A., Landowski, C. P., Shin, H. C., Lennernas, H., Zhong, Y., Amidon, G. L., Yu, L. X. and Sun, D. (2006). Why is it challenging to predict intestinal drug absorption and oral bioavailability in human using rat model. Pharm. Res. 23, 1675-1686. https://doi.org/10.1007/s11095-006-9041-2
  4. Choi, B. C., Choi, J. S. and Han, H. K. (2006). Altered pharmacokinetics of paclitaxel by the concomitant use of morin in rat. Int. J. Pharm. 323, 81-85. https://doi.org/10.1016/j.ijpharm.2006.05.046
  5. Choi, J. S., Kim, Y. C. and Jo, B. W. (2004). Enhanced paclitaxel bioavailability after oral administration of paclitaxel or prodrug to rats pretreated with quercetin. Eur. J. Pharm. Biopharm. 57, 313-318. https://doi.org/10.1016/j.ejpb.2003.11.002
  6. Choi, J. S. and Li, X. (2005). The effect of verapamil on the pharmacokinetics of paclitaxel in rats. Eur. J. Pharm. Sci. 24, 95-100. https://doi.org/10.1016/j.ejps.2004.10.002
  7. Choi, J. S. and Shin, S. C. (2005). Enhanced paclitaxel bioavailability after oral coadministration of paclitaxel prodrug with naringin to rat. Int. J. Pharm. 292, 149-156. https://doi.org/10.1016/j.ijpharm.2004.11.031
  8. Choi, S. U., Lee, B. H., Kim, K. H., Choi, E. J., Park, S. H., Shin, H. S., Yoo, S. E., Jung, N. P. and Lee, C. O. (1997). Novel multidrug-resistance modulators, KR-30026 and KR-30031, in cancer cells. Anticancer. Res. 17, 4577-4582.
  9. Chuang, C. M., Monie, A., Wu, A. and Hung, C. F. (2009). Combination of apigenin treatment with therapeutic HPV DNA vaccination generates enhanced therapeutic antitumor effects. J. Biomed. Sci. 27, 49-60.
  10. Crespi, C. L., Miller, V. P. and Penman, B. W. (1997). Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal. Biochem. 248, 188-190. https://doi.org/10.1006/abio.1997.2145
  11. Critchfield, J. W., Welsh, C. J., Phang, J. M. and Yeh, G. C. (1994). Modulation of adriamycin accumulation and efflux by flavonoids in HCT-15 colon cells. Activation of P-glycoprotein as a putative mechanism. Biochem. Pharmacol. 48, 1437-1445. https://doi.org/10.1016/0006-2952(94)90568-1
  12. Cummins, C. L., Jacobsen, W. and Benet, L. Z. (2002). Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther. 300, 1036-1045. https://doi.org/10.1124/jpet.300.3.1036
  13. Dixon, R. A. and Steele, C. L. (1999). Flavonoids and isoflavonoids - a gold mine for metabolic engineering. Trends. Plant Sci. 4, 394-400. https://doi.org/10.1016/S1360-1385(99)01471-5
  14. Fukuda, K., Ohta, T., Oshima, Y., Ohashi, N., Yoshikawa, M. and Yamazoe, Y. (1997). Specific CYP3A4 inhibitors in grapefruit juice: furocoumarin dimers as components of drug interaction. Pharmacogenetics. 7, 391-396. https://doi.org/10.1097/00008571-199710000-00008
  15. Galati, G., Moridani, M. Y., Chan, T. S. and O’brien, P. J. (2001). Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: glutathione oxidation and conjugation. Free. Radical. Biology & Medicine. 30, 370-382. https://doi.org/10.1016/S0891-5849(00)00481-0
  16. Gao, P., Rush, B. D., Pfund, W. P., Huang, T., Bauer, J. M., Morozowich, W., Kuo, M. S. and Hageman, M. J. (2003). Development of a supersaturable SEDDS (S-SEDDS) formulation of paclitaxel with improved oral bioavailability. J. Pharm. Sci. 92, 2386-2398. https://doi.org/10.1002/jps.10511
  17. Gates, M. A., Vitonis, A. F., Tworoger, S. S., Rosner, B., Titus-Ernstoff, L., Hankinson, S. E. and Cramer, D. W. (2009). Flavonoid intake and ovarian cancer risk in a population-based case-control study. Int. J. Cancer. 124, 1918-1925. https://doi.org/10.1002/ijc.24151
  18. Harris, J. W., Rahman, A., Kim, B. R., Guengerich, F. P. and Collins, J. M. (1994). Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res. 54, 4026-4035.
  19. Ho, P. C., Saville, D. J. and Wanwimolruk, S. (2001). Inhibition of human CYP3A4 activity by grapefruit flavonoids, furanocoumarins and related compounds. J. Pharm. Pharm. Sci. 4, 217-227.
  20. Jeong, G. S., Lee, S. H., Jeong, S. N., Kim, Y. C. and Kim, E. C. (2009). Anti-inflammatory effects of apigenin on nicotineand lipopolysaccharide-stimulated human periodontal ligament cells via heme oxygenase-1. Int. Immunopharmacol. 9, 1374-1380. https://doi.org/10.1016/j.intimp.2009.08.015
  21. Kelly, P. A., Wang, H., Napoli, K. L., Kahan, B. D. and Strobel, H. W. (1999). Metabolism of cyclosporine by cytochromes P450 3A9 and 3A4. Eur. J. Drug. Metab. Pharmacokinet. 24, 321-328. https://doi.org/10.1007/BF03190040
  22. Kimura, Y., Ito, H., Ohnishi, R. and Hatano, T. (2010). Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food. Chem. Toxicol. 48, 429-435. https://doi.org/10.1016/j.fct.2009.10.041
  23. Lee, S. H., Yoo, S. D. and Lee, K. H. (1999). Rapid and sensitive determination of paclitaxel in mouse plasma by high-performance liquid chromatography. J. Chomatogr. B. Biomed. Sci. 724, 357-363. https://doi.org/10.1016/S0378-4347(98)00566-0
  24. Lewis, D. F. V. (1996). Cytochrome P450. Substrate specificity and metabolism. In Cytochromes P450. Structure, Function, and Mechanism (D. F. V. Lewis, Ed.), pp. 122-123. Taylor & Francis, Bristol.
  25. Li, X. and Choi J. S. (2007). Effect of genistein on the pharmacokinetics of paclitaxel administered orally or intravenously in rats. Int. J. Pharm. 337, 188-193. https://doi.org/10.1016/j.ijpharm.2007.01.002
  26. Meerum Terwogt, J. M., Malingre, M. M., Beijnen, J. H., ten Bokkel Huinink, W. W., Rosing, H., Koopman, F. J., van Tellingen, O., Swart, M. and Schellens, J. H. (1999). Coadministration of oral cyclosporin A enables oral therapy with paclitaxel. Clin. Cancer Res. 5, 3379-3384.
  27. Nafisi, S., Hashemi, M. and Rajabi, M. (2008). DNA Adducts with Antioxidant Flavonoids: Morin, Apigenin, and Naringin. DNA and Cell Biology 27, 1-10. https://doi.org/10.1089/dna.2008.1500
  28. Nguyen, H., Zhang, S. and Morris, M. E. (2003). Effect of flavonoids on MRP1-mediated transport in Panc-1 cells. J. Pharm. Sci. 92, 250-257. https://doi.org/10.1002/jps.10283
  29. Rahman, A., Korzekwa, K. R., Grogan, J., Gonzalez, F. J. and Harris, J. W. (1994). Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8. Cancer Res. 54, 5543-5546.
  30. Rowinsky, E. K., Eisenhauer, E. A., Chaudhry, V., Arbuck, S. G. and Donehower, R. C. (1993).Clinical toxicities encountered with paclitaxel (Taxol). Semin. Oncol. 20, 1-15.
  31. Sonnichsen, D. S., Liu, Q., Schuetz, E. G., Schuetz, J. D., Pappo, A. and Relling, M. V. (1995). Variability in human cytochrome P450 paclitaxel metabolism. J. Pharmacol. Exp. Ther. 27, 566-575.
  32. Sparreboom, A., van Asperen, J., Mayer, U., Schinkel, A. H., Smit, J. W., Meijer, D. K., Borst, P., Nooijen, W. J., Beijnen, J. H. and van Tellingen, O. (1997). Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc. Natl. Acad. Sci. USA. 4, 2031-2035.
  33. van Asperen, J., van Tellingen, O., van der Valk, M. A., Rozenhart, M. and Beijnen, J. H. (1998). Enhanced oral absorption and decreased elimination of paclitaxel in mice cotreated with cyclosporine A. Clin. Cancer Res. 4, 2293-2297.
  34. Walle, T., Walle, U. K., Kuma, G. N. and Bhalla, K. N. (1995). Taxol metabolism and disposition in cancer patients. Drug Metab. Disp. 23, 506-512.
  35. Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P. and McPhail, A. T. (1971). Plant antitumor agnets. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 2325-2327. https://doi.org/10.1021/ja00738a045
  36. Woo, J. S., Lee, C. H., Shim, C. K. and Hwang, S. J. (2003). Enhanced oral bioavailability of paclitaxel by coadministration of the P-gp inhibitor KR30031. Pharm. Res. 20, 24-30. https://doi.org/10.1023/A:1022286422439
  37. Yin, Y., Gong, F. Y., Wu, X. X., Sun, Y., Li, Y. H., Chen, T. and Xu, Q. (2008). Anti-inflammatory and immunosuppressive effect of flavones isolated from Artemisia vestita. J. Ethnopharmacol. 120, 1-6. https://doi.org/10.1016/j.jep.2008.07.029

Cited by

  1. Pharmacokinetic properties and drug interactions of apigenin, a natural flavone vol.13, pp.3, 2017, https://doi.org/10.1080/17425255.2017.1251903
  2. Comparative Study on Excretive Characterization of Main Components in Herb Pair Notoginseng-Safflower and Single Herbs by LC–MS/MS vol.10, pp.4, 2010, https://doi.org/10.3390/pharmaceutics10040241