DOI QR코드

DOI QR Code

Inhibitory Effect of Nicardipine on hERG Channel

  • Chung, Eun-Yong (Korea Food and Drug Administration) ;
  • Cho, Hea-Young (Korea Food and Drug Administration) ;
  • Cha, Ji-Hun (National Institute of Food and Drug Safety Evaluation) ;
  • Kwon, Kyoung-Jin (National Institute of Food and Drug Safety Evaluation) ;
  • Jeon, Seol-Hee (National Institute of Food and Drug Safety Evaluation) ;
  • Jo, Su-Hyun (Department of Physiology and Institute of Bioscience and Biotechnology, School of Medicine, Kangwon National University) ;
  • Kim, Eun-Jung (National Institute of Food and Drug Safety Evaluation) ;
  • Kim, Hye-Soo (Korea Food and Drug Administration) ;
  • Chung, Hye-Ju (Korea Food and Drug Administration)
  • Received : 2010.07.27
  • Accepted : 2010.09.14
  • Published : 2010.10.31

Abstract

Drug-induced long QT syndrome is known to be associated with the onset of torsades de pointes (TdP), resulting in a fatal ventricular arrhythmia. QT interval prolongation can result from blocking the human ether-a-go-go-related gene (hERG) channel, which is important for the repolarization of cardiac action potential. Nicardipine, a Ca-channel blocker and antihypertensive agent, has been reported to increase the risk of occasional serious ventricular arrhythmias. We studied the effects of nicardipine on hERG $K^+$ channels expressed in HEK293 cells and Xenopus oocytes. The cardiac electrophysiological effect of nicardipine was also investigated in this study. Our results revealed that nicardipine dose-dependently decreased the tail current of the hERG channel expressed in HEK293 cells with an $IC_{50}$ of 0.43 ${\mu}M$. On the other hand, nicardipine did not affect hERG channel trafficking. Taken together, nicardipine inhibits the hERG channel by the mechanism of short-term channel blocking. Two S6 domain mutations, Y652A and F656A, partially attenuated (Y652A) or abolished (F656A) the hERG current blockade, suggesting that nicardipine blocks the hERG channel at the pore of the channel.

Keywords

References

  1. Ajay, J., Tara, D., Yogesh, V., Changcong, C. and Yan, G. X.(2004). Preclinical strategies to assess QT liability andtorsadogenic potential of new drugs: the role of experimentalmodels. J. Electrocardiol. 37, 7-14. https://doi.org/10.1016/j.jelectrocard.2004.08.003
  2. Andrew, T. S. and Lewis, B. K. (1995). Status of safetypharmacology in the pharmaceutical industry-1995. DrugDevelop. Research 35, 166-172. https://doi.org/10.1002/ddr.430350310
  3. Cordes, J. S., Sun, Z., Lloyd, D. B., Bradley, J. A., Opsahl, A. C.,Tengowski, M. W., Chen, X. and Zhou, J. (2005). Pentamidinereduces hERG expression to prolong the QT interval. Br. J.Pharmacol. 145, 15-23. https://doi.org/10.1038/sj.bjp.0706140
  4. De Ponti, F., Poluzzi, E., Vaccheri, A., Bergman, U., Bjerrum, L., Ferguson, J., Frenz, K. J., McManus, P., Schubert, I., Selke,G., Terzis-Vaslamatzis, G. and Montanaro, N. (2002). Nonantiarrhythmicdrugs prolonging the QT interval: considerableuse in seven countries. Br. J. Clin. Pharmacol. 54,171-177. https://doi.org/10.1046/j.1365-2125.2002.01617.x
  5. Dennis, A., Wang, L., Wan, X. and Ficker, E. (2007). hERGchannel trafficking: novel targets in drug-induced long QTsyndrome. Biochem. Soc. Transactions 35, 1060-1063.
  6. Fermini, B. and Fossa, A. A. (2003). The impact of drug-inducedQT interval prolongation on drug discovery and development.Nature Rev. 2, 439-447. https://doi.org/10.1038/nrd1108
  7. Ficker, E., Dennis, A. T., Wang, L. and Brown, A. M. (2003).Role of the cytosolic chaperones Hsp70 and Hsp90 inmaturation of the cardiac potassium channel HERG. Circ.Res. 92, e87-100. https://doi.org/10.1161/01.RES.0000079028.31393.15
  8. Finlayson, K., Witchel, H. J., McCulloch, J. and Sharkey, J.(2004). Acquired QT interval prolongation and hERG:implications for drug discovery and development. Eur. J.Pharmacol. 500, 129-142. https://doi.org/10.1016/j.ejphar.2004.07.019
  9. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. and Sigworth,F. J. (1981). Improved patch clamp techniques for highresolutioncurrent recording from cells and cell-free membrane-patches. Pflugers Arch. 391, 85-100. https://doi.org/10.1007/BF00656997
  10. ICH Harmonized Tripartite Guideline. (2000). Safety pharmacologystudies for human pharmaceuticals S7A, step 4.
  11. ICH Harmonized Tripartite Guideline. (2005). The nonclinicalevaluation of the potential for delayed ventricular repolarization(QT interval prolongation) by human pharmaceuticalsS7B, step 4.
  12. Kuryshev, Y. A., Ficker, E., Wang, L., Hawryluk, P., Dennis, A.T., Wible, B. A., Brown, A. M., Kang, J., Chen, X. L.,Sawamura, K., Reynolds, W. and Rampe, D. (2005). Pentamidine-induced long QT syndrome and block of hERGtrafficking. J. Pharmacol. Exp. Ther. 312, 316-323. https://doi.org/10.1124/jpet.104.073692
  13. Picard, S. and Lacroix, P. (2003). QT interval prolongation andcardiac risk assessment for novel drugs. Curr. Opin.Investig. Drugs 4, 303-308.
  14. Rashmi, R. S. (2002). The significance of QT interval in drugdevelopment. Br. J. Clin. Pharmacol. 54, 188-202. https://doi.org/10.1046/j.1365-2125.2002.01627.x
  15. Redern, W. S., Carlsson, L., Davis, A. S., Lynch, W. G.,Mackenzie, I., Palethorpe, S., Siegl, P. K., Strang, I.,Sullivan, A. T., Wallis, R., Camm, A. J. and Hammond, T. G.(2004). Relationships between preclinical cardiac electrophysiology,clinical QT interval prolongation and torsade depointes for a broad range of drugs : evidence for a provisionalsafety margin in drug development. Cardiovasc. Res.58, 32-45.
  16. Redfern, W. S., Carlsson, L., Davis, A. S., Lynch, W. G.,MacKenzie, I., Palethorpe, S., Siegl, P. K., Strang, I., Sullivan,A. T., Wallis, R., Camm, A. J. and Hammond, T. G. (2003).Relationships between preclinical cardiac electrophysiology,clinical QT interval prolongation and torsade de pointes for abroad range of drugs: evidence for a provisional safetymargin in drug development. Cardiovasc. Res. 58, 32-45. https://doi.org/10.1016/S0008-6363(02)00846-5
  17. Roden, D. M. and Spooner, P. M. (1999). Inherited long QTsyndromes: a paradigm for understanding arrhythmogenesis.J. Cardiovasc. Electrophysiol. 10, 1664-1683. https://doi.org/10.1111/j.1540-8167.1999.tb00231.x
  18. Sanguinetti, M. C., Chen, J., Fernandez, D., Kamiya, K., Mitcheson,J. and Sanchez-Chapula, J. A. (2005). Physicochemicalbasis for binding and voltage-dependent block of hERGchannels by structurally diverse drugs. Novartis Found.Symp. 266, 159-166. https://doi.org/10.1002/047002142X.ch13
  19. Singh, B. N., Baky, S. H. and Nademanee, K. (1985). Secondgeneration of calcium antagonists: The search for greaterselectivity or versatility. Am. J. Cardiol. 55, 214B-221B. https://doi.org/10.1016/0002-9149(85)90634-4
  20. Trudeau, M. C., Warmke, J. W., Ganetzky, B. and Robertson,G. A. (1995). hERG, a human inward rectifier in thevoltage-gated Pot. channel family. Science 269, 92-95. https://doi.org/10.1126/science.7604285
  21. Zhou, Z., Gong, Q., Epstein, M. L. and January, C. T. (1998).HERG channel dysfunction in human long QT syndrome. J.Biol. Chem. 273, 21061-21066. https://doi.org/10.1074/jbc.273.33.21061