DOI QR코드

DOI QR Code

Styraxjaponoside A and B, Antifungal Lignan Glycosides Isolated from Styrax japonica S. et Z.

  • Park, Cana (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Cho, Jae-Yong (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Hwang, Bo-Mi (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Hwang, In-Sok (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Mi-Ran (College of Pharmacy, Chosun University) ;
  • Woo, Eun-Rhan (College of Pharmacy, Chosun University) ;
  • Lee, Dong-Gun (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • Received : 2010.07.13
  • Accepted : 2010.08.18
  • Published : 2010.10.31

Abstract

The antifungal effects and action mechanisms of styraxjaponoside A and B were investigated. Devoid of hemolytic effect, the compounds had significant effect against several human pathogenic fungal strains, with energy-independent manners. To understand the action mechanisms of the compounds, the flow cytometric analysis plotting the forward scatter and the side scatter, $DiBAC_4$(3) staining and DPH fluorescence analysis were conducted. The results indicated that the actions of the compounds were dependent upon the membrane-active mechanisms. The present study suggests that styraxjaponoside A and B exert their antimicrobial effects via membrane-disruptive mechanisms.

Keywords

References

  1. Ayres, D. and Loike, J. D. (1990). Chemistry and pharmacologyof natural products. Lignans: chemical, biological and clinicalproperties. Cambridge University Press., Cambridge.
  2. Butler, M. S. and Buss, A. D. (2006). Natural products-the futurescaffolds for novel antibiotics. Biochem. Pharmacol. 71,919-929. https://doi.org/10.1016/j.bcp.2005.10.012
  3. Davies, J. (2007). Microbes have the last word. A drastic reevaluationof antimicrobial treatment is needed to overcomethe threat of antibiotic-resistant bacteria. EMBO Rep. 8,616-621. https://doi.org/10.1038/sj.embor.7401022
  4. Fox, J. L. (2006). The business of developing antibacterials.Nat. Biotechnol. 24, 1521-1528. https://doi.org/10.1038/nbt1206-1521
  5. Frohlich, K. U. and Madeo, F. (2000). Apoptosis in yeast--amonocellular organism exhibits altruistic behaviour. FEBSLett. 473, 6-9. https://doi.org/10.1016/S0014-5793(00)01474-5
  6. Jain, B., Martin, E., Stueben, A. and Bhakdi, S. (1995). Susceptibilitytesting of Candida albicans and Aspergillus speciesby a simple microtiter menadione-augmented 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay.J. Clin. Microbiol. 33, 661-667.
  7. Kim, M. R., Moon, H. I., Chung, J. H., Moon, Y. H., Hahm, K. S.and Woo, E. R. (2004). Matrix metalloproteinase-1 inhibitorfrom the stem bark of Styrax japonica S. et Z. Chem. Pharm.Bull. 52, 1466-1469. https://doi.org/10.1248/cpb.52.1466
  8. Kleinberg, M. (2006). What is the current and future status ofconventional amphotericin B? Int. J. Antimicrob. Agents. 27,12-16. https://doi.org/10.1016/j.ijantimicag.2006.03.013
  9. Lee, J., Choi, Y., Woo, E. R. and Lee, D. G. (2009). Isocryptomerin,a novel membrane-active antifungal compoundfrom Selaginella tamariscina. Biochem. Biophys. Res.Commun. 379, 676-680. https://doi.org/10.1016/j.bbrc.2008.12.030
  10. Lee, J. and Lee, D. G. (2009). Antifungal properties of a peptidederived from the signal peptide of the HIV-1 regulatoryprotein, Rev. FEBS Lett. 583, 1544-1547. https://doi.org/10.1016/j.febslet.2009.03.063
  11. Liao, R. S., Rennie, R. P. and Talbot, J. A. (1999). Assessmentof the effect of amphotericin B on the vitality of Candidaalbicans. Antimicrob. Agents Chemother. 43, 1034-1041.
  12. Lou, P. H., Hansen, B. S., Olsen, P. H., Tullin, S., Murphy, M. P.and Brand, M. D. (2007). Mitochondrial uncouplers with anextraordinary dynamic range. Biochem. J. 407, 129-140. https://doi.org/10.1042/BJ20070606
  13. Okamoto-Shibayama, K., Yutaka, S. and Toshifumi A. (2010).Resveratrol Impaired the Morphological Transition ofCandida albicans Under Various Hyphae-InducingConditions. J. Microbiol. Biotechnol. 20, 942-945. https://doi.org/10.4014/jmb.0911.11014
  14. Park, C., Woo E. R. and Lee D. G. (2010). Anti-Candida propertyof a lignan glycoside derived from Styrax japonica S. etZ. via membrane-active mechanisms. Mol. Cells 29, 581-584.
  15. Projan, S. J. and Shlaes, D. M. (2004). Antibacterial drugdiscovery: is it all downhill from here? Clin. Microbiol. Infect.10, 18-22.
  16. Saleem, M., Kim, H. J., Ali, M. S. and Lee, Y. S. (2005). Anupdate on bioactive plant lignans. Nat. Prod. Rep. 22, 696-716. https://doi.org/10.1039/b514045p
  17. Saleem, M., Nazir, M., Ali, M. S., Hussain, H., Lee, Y. S., Riaz,N. and Jabbar, A. (2010). Antimicrobial natural products: anupdate on future antibiotic drug candidates. Nat. Prod. Rep.27, 238-254. https://doi.org/10.1039/b916096e
  18. Veerman, E. C., Valentijn-Benz, M., Nazmi, K., Ruissen, A. L.,Walgreen-Weterings, E., Van Marle, J., Doust, A. B., Van’tHof, W., Bolscher, J. G. and Amerongen, A. V. (2007). Energydepletion protects Candida albicans against antimicrobialpeptides by rigidifying its cell membrane. J. Biol. Chem. 282,18831-18841. https://doi.org/10.1074/jbc.M610555200
  19. Vincent, M., England, L. S. and Trevors, J. T. (2004). Cytoplasmicmembrane polarization in Gram-positive and Gramnegativebacteria grown in the absence and presence oftetracycline. Biochim. Biophys. Acta. 1672, 131-134. https://doi.org/10.1016/j.bbagen.2004.03.005
  20. Wilson, D. F. and Chance, B. (1967). Azide inhibition of mitochondrialelectron transport. I. The aerobic steady state ofsuccinate oxidation. Biochim. Biophys. Acta. 131, 421-430. https://doi.org/10.1016/0005-2728(67)90002-3
  21. Zelezetsky, I., Pacor, S., Pag, U., Papo, N., Shai, Y., Sahl, H.-G.and Tossi, A. (2005). Controlled alteration of the shape andconformational stability of alpha-helical cell-lytic peptides:effect on mode of action and cell specificity. Biochem. J. 390,177-188. https://doi.org/10.1042/BJ20042138

Cited by

  1. Plant bioactive molecules bearing glycosides as lead compounds for the treatment of fungal infection: A review vol.93, 2017, https://doi.org/10.1016/j.biopha.2017.06.077
  2. Plants: A natural solution to enhance raw milk cheese preservation? vol.130, pp.None, 2020, https://doi.org/10.1016/j.foodres.2019.108883