DOI QR코드

DOI QR Code

Customizing Intelligent Recommendation System based on Compound Knowledge

복합지식 기반 개인 맞춤형 지능화 추천시스템

  • 김귀정 (건양대학교 의공학과) ;
  • 김봉한 (청주대학교 컴퓨터정보공학) ;
  • 한정수 (백석대학교 정보통신학부)
  • Received : 2010.07.13
  • Accepted : 2010.07.26
  • Published : 2010.08.28

Abstract

This research does focus on realization of customizing recommendation service that all of formal, or informal learning is accomplished at real time according to worker's current situation or business context corresponding with the individual ability and the learning progress at industry or education field. For this, we designed the customizing intelligent recommendation system based on compound knowledge that workers can listen to coaching advices at real time and to retrieve and recommend multidimensional relation easily. Also, we constructed the repository based on compound knowledge and process engine for efficient management of compound knowledge. In specific industry, expert solution or coaching service will be created using the knowledge which is accumulated in long-term.

본 연구는 작업현장, 교육현장, 기타 시공간에서 작업자의 현재 상황이나 담당업무 맥락에 따라 개인의 숙련도나 학습 진도에 맞추어 비공식학습과 공식학습 모두 실시간으로 발생할 수 있는 개인 추천 서비스 구현을 목표로 한다. 이에 복합지식을 기반으로 실시간으로 코칭과 조언을 들을 수 있으며, 다차원적인 관계를 쉽게 검색하고 추천할 수 있는 개인 맞춤형 복합지식 지능화 추천 시스템을 설계하였다. 이를 위해, 복합지식 저장소와 복합지식관리 모듈을 개발하였다. 특정 산업분야에서는 장기적으로 축척되는 지식베이스를 근간으로 하여 전문적인 문제해결 혹은 코칭 서비스 등을 부가적으로 창출할 것으로 기대된다.

Keywords

References

  1. J. K. Jang and H. S. Kim, "E-learning System using Learner Created Contents based on Social Network," Journal of Korea Contents Association, Vol.9, No.6, pp.17-24, 2009. https://doi.org/10.5392/JKCA.2009.9.6.017
  2. H. J. Suh, Y. H. Kim, S. W. Lee, and J. S. Lee, "e-learning Technology Based on Mixed Reality," Electronics and Telecommunications Trends, Vol.24, No.1, 2009.
  3. Pahl and Claus, “Architecture Solutions for E-learning Systems,” IGIGlobal, 2007.
  4. M. F. Wiesmann, A. Schiper, B. Kemme and G. Alonso, "Understanding Replication in Databases and Distributed Systems," In Proc. of the 21st International Conference on Distributed Computing Systems, pp.464-474, 2000. https://doi.org/10.1109/ICDCS.2000.840959
  5. Ngoc Thanh Nguyen , “Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems,” Iccci 2009, Wroclaw, Poland, 2009.
  6. S. J. Lee and H. C. Lee, Chung Young-Jun,“CLASSIFICATION FUNCTIONS FOR EVALUATING THE PREDICTION PERFORMANCE IN COLLABORATIVE FILTERING RECOMMENDER SYSTEM," Journal of applied mathematics & informatics, Vol.28, No.1, pp.439-450, 2010.
  7. Z. P. Fan, Y. Feng, Y. H. Sun, Bo Feng, and Tian-Hui You, "A Framework on Compound Knowledge Push System Oriented to Organizational Employees,” LNCS 3828, pp.622-630, 2005.
  8. M. J. Walker, R. D. Hull, and S. B. Singh, “CKB- the compound knowledge base: a text based chemical search system,” J. Chem. Inf. Comput. Sc.,. Vol.42, No.6, pp.1293-1295, 2002. https://doi.org/10.1021/ci0255329
  9. Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl, "Explaining Collaborative Filtering Recommendations," CSCW'00, December 2-6, 2000, Philadelphia, PA.

Cited by

  1. A Customer Profile Model for Collaborative Recommendation in e-Commerce vol.11, pp.5, 2011, https://doi.org/10.5392/JKCA.2011.11.5.067