DOI QR코드

DOI QR Code

C2DPCA & R2DLDA for Face Recognition

얼굴 인식 시스템을 위한 C2DPCA & R2DLDA

  • Received : 2009.12.23
  • Accepted : 2010.07.21
  • Published : 2010.08.28

Abstract

The study has proposed a method that simultaneously takes advantage of each projection matrix acquired by using column-directional two-dimensional PCA(C2DPCA) and row-directional two-dimensional LDA(R2DLDA). The proposed method can acquire a great secure recognition rate, with no relation to the number of training images, with acquired low-dimensional feature matrixes including both the horizontal and the vertical features of a face. Besides, in the alternate experiment of PCA and LDA to row-direction and column-direction respectively(C2DPCA & R2DLDA, C2DLDA & R2DPCA), we could make sure the system of 2 dimensional LDA with row-directional feature(C2DPCA & R2DLDA) obtain higher recognition rate with low dimension than opposite case. As a result of experimenting that, the proposed method has showed a greater recognition rate of 99.4% than the existing methods such as 2DPCA and 2DLDA, etc. Also, it was proved that its recognition processing is over three times as fast as that of 2DPCA or 2DLDA.

본 논문에서는 열방향 2차원 PCA(Column-directional 2 Dimensional PCA, C2DPCA) 와 행방향 2차원 LDA(Row-directional 2 Dimensional LDA, R2DLDA)를 사용하여 얻은 각각의 투영 행렬을 동시에 사용하는 방법을 제안하였다. 제안 방법은 얼굴의 가로 특징과 세로 특징을 모두 포함한 저 차원의 특징 행렬을 얻음으로써, 훈련 영상의 수에 관계없이 안정적이고 높은 인식률을 얻을 수 있다. 또한, 같은 알고리즘으로 가로 방향과 세로 방향에 PCA와 LDA를 각각 달리 적용한 실험(C2DPCA & R2DLDA, C2DLDA & R2DPCA)에서 가로 방향의 특징에 2차원 LDA를 적용한 시스템(C2DPCA & R2DLDA)이 그 반대의 경우보다 저차원으로 높은 인식률을 얻을 수 있음을 확인할 수 있었다. 실험 결과 제안한 방법이 2DPCA와 2DLDA 등 의 기존 방법보다 인식율이 높은 99.4%를 얻었다. 또한 제안 방법의 인식 처리속도도 기존의 2DPCA와 2DLDA 방법보다 3배 이상 빠름을 확인하였다.

Keywords

References

  1. T. Kanade, "Picture processing by computer complex and recognition of human faces," Ph.D thesis, Kyoto University, 1973.
  2. M. Turk and A. Pentland, "Eigenfaces for recognition," Journal of Cognitive Neuroscience, Vol.3, No.1, pp.71-86, 1991. https://doi.org/10.1162/jocn.1991.3.1.71
  3. P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, "Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.19, No.7, pp.711-720, 1997. https://doi.org/10.1109/34.598228
  4. J. Yang, D. Zhang, A. F. Frangi, and J. Yang,"Two-dimensional PCA: a new approach to appearance-based face representation and recognition," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.26, No.1, pp.131-137,2004. https://doi.org/10.1109/TPAMI.2004.1261097
  5. M. Li and B. Yuan, "2D-LDA: A statistical linear discriminant analysis for image matrix," Pattern Recognition Letters, Vol.26, No.5, pp.527-532, 2005. https://doi.org/10.1016/j.patrec.2004.09.007
  6. L. Wang, X. Wang, X. Zhang, and J. Feng "The equivalence of two-dimensional PCA to line-based PCA," Pattern Recognition Letters, Vol.26, No.1, pp.57-60, 2005. https://doi.org/10.1016/j.patrec.2004.08.016
  7. P. Nagabhushan, D. S. Guru, and B. H. Shekar, "(2D)2 FLD: An efficient approach for appearance based object recognition," Neurocomputing, Vol.69, No.7-9, pp.934-940, 2006. https://doi.org/10.1016/j.neucom.2005.09.002
  8. P. Samguansat, W. Asdornwised, S.Jitapunkul, and S. Marukatat. "Two dimensional linear discriminant analysis of principle component vectors for face recognition," IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), pp.345-348, 2006. https://doi.org/10.1109/ICASSP.2006.1660350
  9. S. Noushath, G. H. Kumar, and P. Shivakumara, "Diagonal Fisher linear discriminant analysis for efficient face recognition," Neurocomputing, Vol.69, No.13-15, pp.1711-1716, 2006. https://doi.org/10.1016/j.neucom.2006.01.012
  10. D. Zhang, Z. H. Zhou, and S. Chen, "Diagonal principal component analysis for face recognition," Pattern Recognition, Vol.39, No.1, pp.140-142, 2006. https://doi.org/10.1016/j.patcog.2005.08.002
  11. J. Yang, D. Zhang, X. Yong, and J. Y. Yang, "Two-dimensional discriminant transform for face recognition," Pattern Recognition, Vol.38, No.7, pp.1125-1129, 2005. https://doi.org/10.1016/j.patcog.2004.11.019
  12. L. Wang, X. Wang, and J. Feng, "On image matrix based feature extraction algorithms," IEEE Trans. Systems, Man and Cybernetics, Vol.36, No.1, pp.194-197, 2006. https://doi.org/10.1109/TSMCB.2005.852471
  13. S. Noushath, G. H. and P. Shivakumara, "(2D)2LDA: An efficient approach for face recognition," Pattern Recognition, Vol.39, No.7, pp.1396-1400, 2006. https://doi.org/10.1016/j.patcog.2006.01.018
  14. Andy Hopper FREng, “The database of Faces,” AT&T Lab., “http://www.cl.cam. ac.uk/research/dtg/attarchive/facedatabase.html,” 2002.