Abstract
The study has proposed a method that simultaneously takes advantage of each projection matrix acquired by using column-directional two-dimensional PCA(C2DPCA) and row-directional two-dimensional LDA(R2DLDA). The proposed method can acquire a great secure recognition rate, with no relation to the number of training images, with acquired low-dimensional feature matrixes including both the horizontal and the vertical features of a face. Besides, in the alternate experiment of PCA and LDA to row-direction and column-direction respectively(C2DPCA & R2DLDA, C2DLDA & R2DPCA), we could make sure the system of 2 dimensional LDA with row-directional feature(C2DPCA & R2DLDA) obtain higher recognition rate with low dimension than opposite case. As a result of experimenting that, the proposed method has showed a greater recognition rate of 99.4% than the existing methods such as 2DPCA and 2DLDA, etc. Also, it was proved that its recognition processing is over three times as fast as that of 2DPCA or 2DLDA.
본 논문에서는 열방향 2차원 PCA(Column-directional 2 Dimensional PCA, C2DPCA) 와 행방향 2차원 LDA(Row-directional 2 Dimensional LDA, R2DLDA)를 사용하여 얻은 각각의 투영 행렬을 동시에 사용하는 방법을 제안하였다. 제안 방법은 얼굴의 가로 특징과 세로 특징을 모두 포함한 저 차원의 특징 행렬을 얻음으로써, 훈련 영상의 수에 관계없이 안정적이고 높은 인식률을 얻을 수 있다. 또한, 같은 알고리즘으로 가로 방향과 세로 방향에 PCA와 LDA를 각각 달리 적용한 실험(C2DPCA & R2DLDA, C2DLDA & R2DPCA)에서 가로 방향의 특징에 2차원 LDA를 적용한 시스템(C2DPCA & R2DLDA)이 그 반대의 경우보다 저차원으로 높은 인식률을 얻을 수 있음을 확인할 수 있었다. 실험 결과 제안한 방법이 2DPCA와 2DLDA 등 의 기존 방법보다 인식율이 높은 99.4%를 얻었다. 또한 제안 방법의 인식 처리속도도 기존의 2DPCA와 2DLDA 방법보다 3배 이상 빠름을 확인하였다.