DOI QR코드

DOI QR Code

Aureobasidium pullulans HP-2001 균주를 사용한 풀루란의 대량 생산을 위한 파이롯트 규모에서 용존산소와 관련된 조건의 최적화

Pilot-scale Optimization of Parameters Related to Dissolved Oxygen for Mass Production of Pullulan by Aureobasidium pullulans HP-2001

  • 고와 (동아대학교 대학원 의생명과학과) ;
  • 김이준 (동아대학교 대학원 의생명과학과) ;
  • 정정한 (동아대학 BK21 생물자원 실버바이오사업 인력양성단) ;
  • 이잔홍 (중국 화중농업대학교 식물과학기술대학) ;
  • 이진우 (동아대학 BK21 생물자원 실버바이오사업 인력양성단)
  • Gao, Wa (Department of Medical Bioscience, Graduate School of Donga-A University) ;
  • Kim, Yi-Joon (Department of Medical Bioscience, Graduate School of Donga-A University) ;
  • Chung, Chung-Han (BK21 Bio-Silver Project of Dong-A University) ;
  • Li, Jianhong (College of Plant Science & Technology, Huazhong Agricultural University) ;
  • Lee, Jin-Woo (BK21 Bio-Silver Project of Dong-A University)
  • 투고 : 2010.07.26
  • 심사 : 2010.10.12
  • 발행 : 2010.10.30

초록

Aureobasidium pullulans HP-2001 균주를 사용하여 풀루란을 대량 생산을 위하여 7 l 및 100 l 생물배양기를 사용하여 용존산소와 관련된 조건을 최적화하였다. 풀루란의 생산에 최적인 탄소원과 질소원은 각각 50.0 g/l 포도당 및 2.5 g/l 효모추출물이었으며 플라스크 규모에서의 풀루란 변환율은 37%이었다. 풀루란 생산 균주의 생장에 최적인 배지의 초기 pH 및 배양온도는 7.5 및 30oC이었으나 풀루란의 생산에 최적인 배지의 초기 pH 및 배양 온도는 각각 6.0 및 $25^{\circ}C$이었다. 7 l 생물배양기에서 Aureobasidium pullulans HP-2001 균주의 생육에 최적인 교반속도 및 통기량은 각각 600 rpm 및 2.0 vvm이었으나 풀루란 생산에 최적인 조건은 각각 500 rpm 및 1.0 vvm이었으며 최적 조건에서 풀루란의 생산농도는 18.13 g/l이었다. 100 l 생물배양기에서 풀루란 생산 균주의 생장에 최적인 내압은 0.0 kgf/$cm^2$이었으나, 풀루란 생산에 최적인 내압은 0.4 kgf/$cm^2$이었으며 최적 조건에서 풀루란의 생산 농도는 22.89 g/l이었다. 이는 내압이 없는 상태에 비하여 풀루란의 생산 농도가 1.38배 증가한 것이다.

Parameters related to dissolved oxygen for the production of pullulan by Aureobasidium pullulans HP-2001 were optimized in 7 l and 100 l bioreactors. The optimal concentrations of glucose and yeast extract for the production of pullulan were 50.0 and 2.5 g/l, respectively, and its conversion rate from glucose was 37% at a flask scale. The optimal initial pH of the medium and temperature for cell growth were 7.5 and $30^{\circ}C$, whereas those for the production of pullulan were 6.0 and $25^{\circ}C$. The optimal agitation speed and aeration rate for cell growth were 600 rpm and 2.0 vvm in a 7 l bioreactor, whereas those for the production of pullulan were 500 rpm and 1.0 vvm. The production of pullulan with an optimized agitation speed of 500 rpm and aeration rate of 1.0 vvm was 18.13 g/l in a 7 l bioreactor. Maximal cell growth occurred without inner pressure, whereas the optimal inner pressure for the production of pullulan was 0.4 kgf/$cm^2$ in a 100 l bioreactor. The production of pullulan under optimized conditions in this study was 22.89 g/l in a 100 l bioreactor, which was 1.38 times higher than that without inner pressure.

키워드

참고문헌

  1. Catley, B. J., A. Ramsay, and C. Servis. 1986. Observations on the structure of fungal extracellular-polysaccharide, pullulan. Carbohydr. Res. 153, 79-86. https://doi.org/10.1016/S0008-6215(00)90197-6
  2. Chi, Z. and S. Zhao. 2003. Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast strain. Enzym. Microb. Technol. 33, 206-211. https://doi.org/10.1016/S0141-0229(03)00119-4
  3. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetic method for determination of sugars and related substances. Anal. Chem. 28, 350-356. https://doi.org/10.1021/ac60111a017
  4. Elibol, M. and D. Ozer. 2000. Influence of oxygen transfer on lipase production by Rhizopus arrhizus. Process Biochem. 36, 325-329. https://doi.org/10.1016/S0032-9592(00)00226-0
  5. Feng, Y., Z. He, S. L. Ong, J. Hu, Z. Zhang, and W. J. Ng. 2003. Optimization of agitation, aeration, and temperature conditions for maximum $\beta$-mannase production. Enzym. Microb. Technol. 32, 282-289. https://doi.org/10.1016/S0141-0229(02)00287-9
  6. Gao, W., Y. J. Kim, C. H. Chung, J. Li, and J. W. Lee. 2010. Optimization of mineral salts in medium for enhanced production of pullulan by Aureobasodium pullulans HP-2001 using orthogonal array method. Biotechnol. Bioprocess Eng. (in press).
  7. Giavasis, I., L. M. Harvey, and B. McNeil. 2006. The effect of agitation and aeration on the synthesis and molecular weight of gellan batch cultures of Sphingomonas paucimobilis. Enzym. Microb. Technol. 38, 101-108. https://doi.org/10.1016/j.enzmictec.2005.05.003
  8. Guterman, H. and Y. Shabtai. 1996. A self-tuning vision system for monitoring biotechnological process. I. Application to production of pullulan by Aureobasidium pullulans. Biotechnol. Bioeng. 51, 501-510. https://doi.org/10.1002/(SICI)1097-0290(19960905)51:5<501::AID-BIT1>3.3.CO;2-Q
  9. Heald, P. and B. Kristiansen. 1985. Synthesis of polysaccharide by yeast-like forms of Aureobasidium pullulans. Biotechnol. Bioeng. 27, 1516-1519. https://doi.org/10.1002/bit.260271019
  10. Jelinek, M., R. Cristescu, E. Axente, T. Kocourek, J. Dybal, J. Remsa, J. Plestil, D. Mihaiescu, M. Albulescu, T. Buruiana, I. Stamatin, I. N. Mihailescu, and D. B. Chrisey. 2007. Matrix assisted pulsed laser evaporation of cinnamate-pullulan and tosylate-pullulan polysaccharide derivative thin films for pharmaceutical applications. Appl. Surf. Sci. 253, 7755-7760. https://doi.org/10.1016/j.apsusc.2007.02.085
  11. Jiang, L. 2010. Optimization of fermentation conditions for pullulan production by Aureobasodium pullulans using response surface methodology. Carbohyr. Polym. 79, 414-417 https://doi.org/10.1016/j.carbpol.2009.08.027
  12. Jo, K. I., Y. J. Lee, B. K. Kim, B. H. Lee, C. H. Chung, S. W. Nam, S. K. Kim, and J. W. Lee. 2008. Pilot-scale production of carboxymethylcellulase from rice hull by Bacullus amyloliquefaciens DL-3. Biotechnol. Bioprocess Eng. 13, 182-188. https://doi.org/10.1007/s12257-007-0149-y
  13. Jung, D. Y., Y. S. Cho, C. H. Chung, D. I. Jung, K. Kim, and J. W. Lee. 2001. Improved production of curdlan with concentrated cells of Agrobacterium sp. Biotechnol. Bioprocess Eng. 6, 107-111. https://doi.org/10.1007/BF02931955
  14. Kondratyeva, T. F. 1981. Production of the polysaccharide pullulan by Aureobasidium (Pullularia) pullulans. Uspechi Microbiol. 16, 175-192.
  15. Lacroix, C., A. Le Duy, G. Noel, and L. Choplin. 1985. Effect of pH on the batch fermentation of pullulan from sucrose medium. Biotechnol. Bioeng. 27, 202-207. https://doi.org/10.1002/bit.260270216
  16. Lazaridou, A., T. Roukas, C. G. Biliaderis, and H. Vaikousi. 2002. Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation. Enzym. Microb. Technol. 31, 122-132. https://doi.org/10.1016/S0141-0229(02)00082-0
  17. Leathers, T. D. 1993. Substrate regulation and specificity of amylases from Aureobasidium strain NRRL Y-12,974. FEMS. Microbiol. Lett. 110, 217-222. https://doi.org/10.1111/j.1574-6968.1993.tb06323.x
  18. Lee, J. H., J. H. Kim, I. H. Zhu, X. B. Zhan, J. W. Lee, D. H. Shin, and S. K. Kim. 2001. Optimization of conditions for the production of pullulan and high molecular weight pullulan by Aureobasidium pullulans. Biotechnol. Lett. 23, 817-820. https://doi.org/10.1023/A:1010365706691
  19. Lee, J. H., J. H. Kim, M. R. Kim, S. M. Lim, S. W. Nam, J. W. Lee, and S. K. Kim. 2002. Effect of dissolved oxygen concentration and pH on the mass production of high molecular weight pullulan by Aureobasidium pullulans. J. Microbiol. Biotechnol. 12, 1-7.
  20. Lee, J. W., W. G. Yeomans, A. L. Allen, R. A. Gross, and D. L. Kaplan. 1999. Biosynthesis of novel exopolymers by Aureobasidium pullulans. Appl. Environ. Microbiol. 65, 5265-5271.
  21. Lee, N. K., Y. B. Jo, I. H. Jin, C. W. Son, and J. W. Lee. 2009. The effect of potassium phosphate as a pH stabilizer on the production of gellan by Spingmonas paucibilis NK-2000. J. Life Sci. 19, 1033-1038. https://doi.org/10.5352/JLS.2009.19.8.1033
  22. Madi, N., B. McNeil, and L. M. Harvey. 1997. Effect of exogenous calcium on morphological development and biopolymer synthesis in the fungus Aureobassidium pullulans. Enzym. Microb. Technol. 21, 102-107. https://doi.org/10.1016/S0141-0229(96)00232-3
  23. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426-428. https://doi.org/10.1021/ac60147a030
  24. Moscovici, M., C. Ionescu, C. Oniscu, O. Potea, P. Protopopescu, and L. D. Hanganu. 1996. Improved exopolysaccharide production in fed-batch fermentation of Aureobasidium pullulans with increased impeller speed. Biotechnol. Lett. 18, 787-790. https://doi.org/10.1007/BF00127889
  25. Pollock, T. J., L. Thorne, and R. W. Armentrout. 1992. Isolation of new Aureobasidium strains that produce high molecular-weight pullulan with reduced pigmentation. Appl. Environ. Microbiol. 58, 877-883.
  26. Qian, X., Y. Zhu, J. W. Lee, and X. Zhan. 2001. Kinetic studies on production of pullulan by Aureobasidium pullulans. J. Life Sci. 11, 116-119.
  27. Ronen, M., H. Guterman, and Y. Shabtai. 2002. Monitoring and control of pullulan producing using vision sensors. J. Biochem. Biophys. Meth. 51, 243-249. https://doi.org/10.1016/S0165-022X(01)00182-8
  28. Roukas, T. and M. Liakopoulous-Kyriakides. 1999. Production of pullulan from beet molasses by Aureobasidium pullulans in a stirred tank fermentor. J. Food. Eng. 40, 89-94. https://doi.org/10.1016/S0260-8774(99)00043-6
  29. Seo, H. P., C. H. Chung, S. K. Kim, R. A. Gross, D. L. Kaplan, and J. W. Lee. 2004. Mass production of pullulan with optimized concentrations of carbon and nitrogen sources by Auriebaisdium pullulans HP-2001 in a 100L bioreactor with the inner pressure. J. Microbiol. Biotechnol. 14, 237-242.
  30. Seo, H. P., C. W. Son, C. H. Chung, D. I. Jung, S. K. Kim, R. A. Gross, D. L. Kaplan, and J. W. Lee. 2004. Production of high molecular weight pullulan by Aureobasisium pullulans HP-2001 with soybean pomace as a nitrogen source. Bioresour. Technol. 95, 293-299. https://doi.org/10.1016/j.biortech.2003.02.001
  31. Seo, H. Y., K. I. Jo, C. W. Son, J. K. Yang, C. H. Chung, Nam, S. W., S. K. Kim, and J. W. Lee. 2006. Continuous production of pullulan by Aureobasidum pullulans HP-2001 with feeding of high concentration of sucrose. J. Microbiol. Biotechnol. 16, 374-380.
  32. Singh, P. S., G. K. Saini, and J. F. Kennedy. 2008. Pullulan: microbial sources, production and applications. Carbohydr. Polym. 73, 515-531. https://doi.org/10.1016/j.carbpol.2008.01.003
  33. Simon, L., B. Bouchet. C. Caye-Vaugien, and D. J. Gallant. 1995. Pullulan elaboration and differentiation of the resting forms in Aureobasidium pullulans. Can. J. Microbiol. 40, 35-45.
  34. Tarabasz-Szymanska, L., E. Galas, and T. Pankiewicz. 1999. Optimization of productivity of pullulan by means of multivariable linear regression analysis. Enzym. Microb. Technol. 24, 276-282. https://doi.org/10.1016/S0141-0229(98)00117-3

피인용 문헌

  1. Enhanced production of carboxymethylcellulase by Cellulophaga lytica LBH-14 in pilot-scale bioreactor under optimized conditions involved in dissolved oxygen vol.30, pp.5, 2013, https://doi.org/10.1007/s11814-012-0219-5
  2. Film forming microbial biopolymers for commercial applications—A review vol.34, pp.4, 2014, https://doi.org/10.3109/07388551.2013.798254
  3. Enhanced Production of Carboxymethylcellulase by a Newly Isolated Marine Microorganism Bacillus atrophaeus LBH-18 Using Rice Bran, a Byproduct from the Rice Processing Industry vol.22, pp.10, 2012, https://doi.org/10.5352/JLS.2012.22.10.1295
  4. Application of statistical experimental design for optimization of physiological factors and their influences on production of pullulan by Aureobasidium pullulans HP-2001 using an orthogonal array method vol.28, pp.11, 2011, https://doi.org/10.1007/s11814-011-0107-4