DOI QR코드

DOI QR Code

Production of the Antiserum against Recombinant Envelop Protein, rVP466 for the Neutralization of White Spot Syndrome Virus (WSSV)

흰반점바이러스(WSSV)의 중화를 위한 재조합단백질 rVP466의 항혈청 생산

  • Received : 2010.06.14
  • Accepted : 2010.10.14
  • Published : 2010.10.30

Abstract

This study was carried out to evaluate neutralization effects against WSSV using antiserum produced from recombinant envelop protein, rVP466 of WSSV. The VP466 gene of WSSV was cloned into pCold I expression vector and rVP466 was expressed in E. coli RIPL. The antiserum against rVP466 was produced in white rabbits (New Zealand white rabbit). The specific immunoreactivity to the antigen, rVP466, was confirmed by Western blot. The constant amounts of WSSV at $1{\times}10^4$ diluted stocks were mixed with various antiserum concentrations and then injected to the muscle of shrimp, Penaeus chinensis, for the neutralization challenge. The shrimps challenged with WSSV as a positive control and those with the mixture of WSSV and preimmune serum as a preimmune control showed 100% cumulative mortality at 17 days post challenge and 83% at 25 days post challenge, respectively. The shrimps challenged with 3 different mixtures of WSSV and rVP466 antiserum at ratios of 1:0.01, 1:0.1 and 1:1 showed 73%, 53% and 46% cumulative mortalities at 25 days post challenge, respectively. These results indicated that WSSV could be neutralized by the rVP466 antiserum. These results suggest that envelop protein VP466 is involved in the initial step of WSSV infection in shrimp.

본 연구는 WSSV의 재조합단백질 rVP466에 대하여 생산된 항혈청을 사용하여 WSSV에 대한 neutralization (중화) 효과를 확인하고자 수행하였다. 먼저 재조합단백질 rVP466의 생산을 위해 WSSV의 구성단백질 VP466을 암호화하는 유전자인 VP466을 포함하는 재조합 플라스미드 pCold-VP466을 제작한 다음 이것을 발현용 숙주인 E. coli RIPL에서 발현하였다. 발현된 rVP466에 대한 항혈청은 토끼를 사용하여 생산하였으며, 항원 rVP466에 대한 특이면역반응은 Western blot을 통해 확인하였다. WSSV에 대한 항혈청의 중화효과를 확인하기 위해 항혈청과 반응시킨 바이러스액($1{\times}10^4$ 배로 희석된 WSSV)을 이용하여 실험용 새우(Penaeus chinensis)에게 주사 감염을 통해 공격실험(challenge test)을 수행하였다. 실험 결과, WSSV로 공격실험한 감염대조구(positive control)의 새우들은 감염 후 17일째에 100% 누적폐사율을 보였으며, preimmune serum과 WSSV의 혼합액을 challenge한 preimmune control의 새우들은 감염 후 25일째에 83%의 누적폐사율을 보였다. WSSV와 rVP466 항혈청을 1:0.01, 1:0.1, 1:1로 혼합한 액으로 challenge한 새우들은 감염 후 25일째에 각각 73%, 53%, 46%의 누적폐사율을 보였다. 이상의 결과를 통해 WSSV가 rVP466 항혈청에 의해 농도의존적으로 neutralization됨을 확인하였으며, 이는 WSSV 감염과정에 VP466이 관여함을 나타내는 것이다.

Keywords

References

  1. Burton, D. R. 2002. Antibodies, viruses and vaccines. Natl. Rev. Immunol. 2, 706-713. https://doi.org/10.1038/nri891
  2. Escobedo-Bonilla, C. M., V. Alday-Sanz, M. Wille, P. Sorgeloos, M. B. Pensaert, and H. J. Nauwynck. 2008. A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. J. Fish Dis. 31, 1-18. https://doi.org/10.1111/j.1365-2761.2007.00877.x
  3. Ha, Y. M., Y. I. Kim, K. H. Kim, and S. K. Kim. 2008. Neutralization of white spot syndrome virus (WSSV) for Penaeus chinensis by antiserum raised against recombinant VP19. J. Environ. Biol. 29, 513-517.
  4. Harlow, E. and D. Lane. 1988. Antibodies: a laboratory manual. NY, USA: Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
  5. Herold, B. C., D. WuDunn, N. Soltys, and P. G. Spear. 1991. Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J. Virol. 65, 1090-1098.
  6. Huahua, D., Z. Xu, X. Wu, W. Li, and W. Dai. 2006. Increased resistance to white spot syndrome virus in Procambarus clarkii by injection of envelop protein VP28 expressed using recombinant baculovirus. Aquaculture 260, 39-43. https://doi.org/10.1016/j.aquaculture.2006.06.032
  7. Musthaq, S. S., K. Yoganandhan, R. Sudhakaran, S. R. Kumar, and A. S. Hameed. 2006. Neutralization of white spot syndrome virus of shrimp by antiserum raised against recombinant VP28. Aquaculture 253, 98-104. https://doi.org/10.1016/j.aquaculture.2005.07.032
  8. Schofield, D. J., J. Glamann, S. U. Emerson, and R. H. Purcell. 2000. Identification by phage display and characterization of two neutralizing chimpanzee monoclonal antibodies to the hepatitis E virus capsid protein. J. Virol. 74, 5548-5555. https://doi.org/10.1128/JVI.74.12.5548-5555.2000
  9. Van Hulten, M. C. W., J. Witteveldt, M. Snippe, and J. M. Vlak. 2001. White spot syndrome virus envelop protein VP28 is involved in the systemic infection of shrimp. Virology. 285, 228-233. https://doi.org/10.1006/viro.2001.0928
  10. Venegas, C. A., L. Nonaka, K. Mushiake, T. Nishizawa, and K. Muroga. 2000. Quasi-immune response of Penaeus japonicus to penaeid rod-shaped DNA virus (PRDV). Dis. Aquat. Org. 42, 83-89. https://doi.org/10.3354/dao042083
  11. Vlak, J. M., J. R. Bonami, T. W. Flegel, G. H. Kou, D. V. Lightner, C. F. Loh, P. C. Loh, and P. W. Walker. 2005. Nimaviridae. Academic Press, London, UK: Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses.
  12. Volkman, L. E. and P. A. Goldsmith. 1985. Mechanism of neutralization of budded Autographs californica nuclear polyhedrosis virus by a monoclonal antibody: Inhibition of entry by adsorptive endocytosis. Virology. 143, 185-195. https://doi.org/10.1016/0042-6822(85)90107-2
  13. Witteveldt, J., C. C. Cifuentes, J. M. Vlak, and Van M. C. W. Hulten. 2004. Protection of Penaeus monodon against white spot syndrome virus by oral vaccination. J. Virol. 78, 2057-2061. https://doi.org/10.1128/JVI.78.4.2057-2061.2004
  14. Wu, J. L., T. Nishioka, K. Mori, T. Nishizawa, and K. A. Muroga. 2002. A time-course study on the resistance of Penaeus japonicus induced by artificial infection with white spot syndrome virus. Fish Shellfish Immunol. 13, 391-403. https://doi.org/10.1006/fsim.2002.0414