DOI QR코드

DOI QR Code

A Numerical Model for Wind-Induced Circulation in a Thermally Stratified Flow

수온성층흐름에서 바람에 의해 발생하는 순환흐름을 해석하기 위한 수치모형개발

  • Lee, Jin-Woo (Dept. of Civil and Environ. Engrg., Hanyang University) ;
  • Kim, Hyung-Jun (Dept. of Civil and Environ. Engrg., Hanyang University) ;
  • Cho, Yong-Sik (Dept. of Civil and Environ. Engrg., Hanyang University)
  • 이진우 (한양대학교 건설환경공학과) ;
  • 김형준 (한양대학교 건설환경공학과(한국건설기술연구원 하천.해안항만연구실)) ;
  • 조용식 (한양대학교 건설환경공학과)
  • Received : 2010.06.24
  • Accepted : 2010.10.05
  • Published : 2010.10.31

Abstract

The closed water bodies, such as reservoirs and lakes, could be contaminated by an inflow of pollutants in the upstream as well as a stratification caused by seasonal natural phenomena. The vertical circulation particularly plays an important role in reduction of environmental pollutants. The factors of the vertical circulation are the temperature, wind, thermal diffusivity and sunlight. The wind is probably the most significant factor among them. Thus, it is necessary to describe the validation and application of a three-dimensional numerical model of wind-induced circulation in a thermally stratified flow. In this paper, a three-dimensional numerical model for the thermally stratified flows is presented. The model is conducted in three steps to calculate the velocity components from the momentum equations in x- and y- axis directions, the elevations from the free surface equation and the temperature from the scalar transport equation. Numerical predictions are compared with available analytical solutions for the sloshing free surface movement in a rectangular basin. The numerical results generally show a reasonable agreement with analytical solutions. And the model is applied to the circulation for the wind induced flow in a thermally stratification. Consequently, the developed model is validated by two verifications and phenomena of the internal flow.

저수지와 같은 갇혀진 수체는 상류에서 유입되는 오염물질 뿐만 아니라 성층현상에 의해서도 오염될 수 있다. 갇혀진 수체에서의 연직순환은 이러한 오염을 줄이는데 중요한 역할을 하는데, 연직순환을 일으키는 인자로는 빛의 입사, 바람, 물의 온도 및 열의 확산 등이 있으며, 그중에서도 가장 중요한 것은 바람의 영향이다. 그러므로 성층화된 흐름에서 바람에 의해 발생하는 연직순환에 대한 수치모형을 개발하고 적용하는 것이 필요하다. 본 연구는 수온성층흐름을 해석할 수 있는 3차원 수치모형을 제시하였다. 유속성분은x-축과 y-축 방향에서의 운동량방정식으로부터 3단계에 걸쳐 계산되고, 자유수면 변위와 온도변화 등의 스칼라양은 각각 자유수면방정식과 이송-확산 방정식으로부터 계산된다. 본 연구에서 제시한 모형의 정확도를 검증하기 위하여 정사각형수조에서 진동하는 자유수면의 해석해와 비교하였고, 성층화된 흐름에서 발생하는 연직순환에 대하여 수치모의를 실시하였다. 그 결과, 본 연구에서 개발된 수치모형이 흐름 내부의 현상을 잘 묘사함을 알 수 있었다.

Keywords

References

  1. 윤태훈, 이종욱(1999). "불연속흐름의 2차원 수치해석." 대한토목학회논문집, 대한토목학회, 제19권, 제II-4호, pp. 445-454.
  2. 이종욱, 조용식(2001). "TVD 수치모형 개발: II. 천수방정식." 한국수자원학회논문집, 한국수자원학회, 제34권, 제2호, pp. 187-195.
  3. Blumberg, A.F., and Mellor, G.L., (1987). "A description of a three dimensional coastal ocean circulation model." In Heaps, N.S, editor, Three Dimensional Coastal Ocean Circulation Models, Coastal and Estuarine Sciences, Vol. 4, pp. 1-16. American Geophysical Union, Washington DC.
  4. Casulli, V. (1999). "Semi-implicit finite difference method for non-hydrostatic, free-surface flows." International Journal for Numerical Methods in Fluids, Vol. 30, pp. 425-440. https://doi.org/10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO;2-D
  5. Casulli, V., and Cattani, E. (1994). "Stability, accuracy and efficiency of a semi-implicit method for threedimensional shallow water flow." Computers and Mathematics with Applications, Vol. 27, No. 4, pp. 99-112.
  6. Casulli, V., and Cheng, R.T., (1992). "Semi-implicit finite difference methods for three-dimensional shallow water flow." International Journal for Numerical Methods in Fluids, Vol. 15, pp. 629-648. https://doi.org/10.1002/fld.1650150602
  7. Chen, X. (2003a). "A free-surface correction method for simulating shallow water flows." Journal of Computational Physics, Vol. 189, No. 2, pp. 557-578. https://doi.org/10.1016/S0021-9991(03)00234-1
  8. Chen, X. (2003b). "A fully hydrodynamic model for three-dimensional, free-surface flows." International Journal for Numerical Methods in Fluids, Vol. 42, No. 9, pp. 929-952. https://doi.org/10.1002/fld.557
  9. Fischer, H.B., List, E.H., Koh, R.C.Y., Imberger, J., and Brooks, N.H., (1979). Mixing in Inland and Coastal Waters. Academic Press.
  10. Huang, W., and Spaulding, M., (1995). "3D model of estuarine circulation and water quality induced by surface discharges." Journal of Hydraulic Engineering, Vol. 121, No. 4, pp. 300-311. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:4(300)
  11. Jankowski, J.A., (1999). A Non-Hydrostatic Model for Free Surface Flows. Ph.D. thesis, Hanover University, Germany.
  12. UNESCO (1981). Tenth report of the joint panel on oceanographic tables and standards. In UNESCO Technical Papers in Marine Science, 36. UNESCO.
  13. van der Vorst, H.A. (1992). "BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems." SIAM Journal on Scientific and Statistical Computing, Vol. 13, No. 2, pp. 631-644. https://doi.org/10.1137/0913035
  14. Yuan, H., and Wu, C.H. (2004). "An implicit threedimensional fully non-hydrostatic model for freesurface flows." International Journal for Numerical Methods in Fluids, Vol. 46, pp. 709-733. https://doi.org/10.1002/fld.778

Cited by

  1. Evaluation of the Water Quality Changes in Agricultural Reservoir Covered with Floating Photovoltaic Solar-Tracking Systems vol.39, pp.5, 2017, https://doi.org/10.4491/KSEE.2017.39.5.255