DOI QR코드

DOI QR Code

Prevalence of Metabolic Syndrome and Related Risk Factors of Elderly Residents in Andong Rural Area 2. Based on the Biochemical Measurements and Nutrient Intakes

안동 농촌지역 중년 및 노인 주민의 대사증후군 유병율과 관련 위험요인 분석 2. 생화학 측정결과와 영양소 섭취를 중심으로

  • Lee, Hye-Sang (Dept. of Food Science and Nutrition, Andong National University) ;
  • Kwon, Chong-Suk (Dept. of Food Science and Nutrition, Andong National University)
  • Received : 2010.06.22
  • Accepted : 2010.08.05
  • Published : 2010.10.31

Abstract

This study was performed to identify the association between the metabolic syndrome and the biochemical measurements and nutrient intakes. A total of 1,431 people (533 males, 898 females) aged over 45 years living in Andong rural area participated in this study in 2003. Plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), $\gamma$-glutamyl transferase ($\gamma$-GT) and thiobarbituric acid reactive substances (TBARS) levels in metabolic syndrome were significantly higher than those in normal group. In multiple logistic regression, those biochemical measurements were found to be positively associated with the metabolic syndrome as the adjusted odds ratios (OR) 1.839 (p<0.001) by AST, 2.302 (p<0.01) by ALT, 2.143 (p<0.001) by $\gamma$-GT, and 1.874 (p<0.001) by TBARS. We also found that the increased level of those measurements tended to be strongly associated with high triglyceride among the metabolic syndrome components. However, the nutrient intakes between the metabolic syndrome and the normal group were not significantly different. Also, we could not find any nutrient intakes significantly associated with the metabolic syndrome, except high carbohydrate intake (>70% of kcal) compared to normal intake (55~70% of kcal) showed OR 0.781 (p<0.05). In analyzing the association of nutrient intakes with metabolic syndrome components, we found that the calorie intake was negatively associated with abdominal obesity (OR 0.696, p<0.05) and high fat intake (>25% of kcal) was positively associated with low HDL-cholesterol (OR 1.864, p<0.05). This study revealed that the biochemical measurements, such as plasma AST, ALT, $\gamma$-GT, and TBARS, are associated with metabolic syndrome, but considering the nutrient intakes, we suggest that further studies are needed to identify the associations.

본 연구는 농촌지역 주민들의 대사증후군 예방을 위한 영양 사업에 기초 자료를 제공하고자 안동시 읍면 지역 농촌의 45세 이상 1,431명의 주민을 대상으로 대사증후군 집단과 정상 집단의 생화학적 특성 및 영양소 섭취 상태를 조사하고 대사증후군 발생 위험도와의 관련성을 다항로지스틱회귀모델을 사용하여 분석하였다. 대사증후군 집단과 정상 집단간에 연령 차이는 없었으며, 혈액 AST, ALT, $\gamma$-GT 및 과산화지질은 대사증후군 집단이 정상 집단에 비해 유의적으로 높았다. 대사증후군 위험도 분석에서 여자가 남자에 비해 위험도가 2.953배 높았으며, 연령에 따른 차이는 나타나지 않았다. 혈액 AST, ALT 및 $\gamma$-GT의 경우, 30 U/L 이상 집단에서 각각 1.839배, 2.302배 및 2.143배 위험도가 높았으며, 혈액 과산화지질 농도도 5.7 nmole/mL 이상 집단에서 위험도가 1.874배 높은 것으로 나타났다. 각 진단요소별 위험도 분석에서, 혈액 AST, ALT 및 $\gamma$-GT가 각각 30 U/L 이상에서 AST는 복부비만, 고혈압, 고 중성지방혈증 위험도가 각각 1.394배, 1.514배, 1.528배 높으며, ALT는 고 중성지방혈증과 높은 공복혈당이 각각 2.138배와 2.310배, $\gamma$-GT는 복부비만, 고혈압, 고 중성지방혈증 및 높은 공복혈당이 각각 1.513배, 1.594배, 2.354배 및 1.858배 높은 것으로 나타났다. 혈액 과산화지질은 5.7 nmole/mL 이상에서 복부비만, 고 중성지방혈증 및 높은 공복혈당이 각각 1.607배, 3.095배 및 1.757배 높았다. 대사증후군 집단과 정상 집단의 영양소 섭취 상태는 유의적인 차이가 없었으며, 대사증후군 위험도 분석에서 에너지의 70% 이상을 탄수화물로 섭취하는 경우 대사증후군 위험도가 0.781로 낮은 경우를 제외하고는 영양소와 대사증후군 간에 유의한 관련성이 나타나지 않았다. 영양소 섭취와 대사증후군 진단요소별 위험도 분석에서 열량 섭취가 EER 미만인 집단의 복부비만 위험도가 유의적으로 낮았으며(OR 0.696, p<0.05), 열량에 대한 탄수화물 비율이 55% 미만인 경우 저 HDL-콜레스테롤 위험도가 1.630배 증가하였고, 70%를 초과한 경우 복부비만과 고혈압 위험도가 각각 0.724배와 0.733배 낮았으며, 지질 섭취가 25%를 초과한 경우 저 HDL-콜레스테롤 위험도가 1.864배 높았다. 이상의 결과로부터 대사증후군 집단의 혈액 트랜스아미나제 활성과 과산화지질 농도가 정상 집단에 비해 유의하게 높으므로 이 지역 주민들의 대사증후군 예방을 위해서는 정기적으로 혈액 트랜스아미나제와 과산화지질 농도의 측정을 통한 관리가 필요하다고 생각되며, 영양소 섭취가 대사증후군 발생에 미치는 영향에 대해서는 더 많은 연구가 필요한 것으로 사료된다.

Keywords

References

  1. Ministry of Health, Welfare and Family Affairs. 2008. 2005 Korean National Health and Nutrition Examination Survey Report (KNHANES III).
  2. Lim S, Jang HC, Lee HK, Kim KC, Park C, Cho NH. 2006. A rural-urban comparison of the characteristics of the metabolic syndrome by gender in Korea: The Korean Health and Genome Study (KHGS). J Endocrinol Invest 29: 313-319. https://doi.org/10.1007/BF03344102
  3. Lee HS, Kwon CS. 2010. Prevalence of metabolic syndrome and related risk factors of elderly residents in Andong rural area. 1. Based on the anthropometric measurements and health behaviors. J Korean Soc Food Sci Nutr 39: 511-517. https://doi.org/10.3746/jkfn.2010.39.4.511
  4. Park HS, Oh SW, Cho SI, Choi WH, Kim YS. 2004. The metabolic syndrome and associated lifestyle factors among South Korean adults. Int J Epidemiol 33: 328-336. https://doi.org/10.1093/ije/dyh032
  5. Oh SW, Yoon YS, Lee ES, Kim WK, Park CY, Lee SY, Jeong EK, Yoo TW. 2005. Association between cigarette smoking and metabolic syndrome. Diabetes Care 28: 2064-2066. https://doi.org/10.2337/diacare.28.8.2064
  6. Yoon YS, Oh SW, Baik HW, Park HS, Kim WY. 2004. Alcohol consumption and the metabolic syndrome in Korean adults: the 1998 Korean National Health and Nutrition Examination Survey. Am J Clin Nutr 80: 217-224. https://doi.org/10.1093/ajcn/80.1.217
  7. Koh JH, Lee MY, Nam SM, Sung JK, Jung PM, Noh JK, Shin JY, Shin JY, Shin YG, Chung CH. 2008. Relationship between menopausal status and metabolic syndrome components in Korean women. Korean Diabetes J 32: 243-251. https://doi.org/10.4093/kdj.2008.32.3.243
  8. Kwon JH, An YS, Kang YH, Son SM, Kim IJ, Kim YK. 2008. Alanine aminotransferase as a predictor of metabolic syndrome in Koreans. J Korean Endocr Soc 23: 404-412. https://doi.org/10.3803/jkes.2008.23.6.404
  9. Lee SJ, Park JY, Nam CM, Jee SH. 2008. The prevalence estimation of metabolic syndrome and it's related factors based on data from general health medical examination: a multi-center study. J Korean Soc Health Information & Health Statistics 33: 119-133.
  10. Kim MY, Baik SK. 2008. Nonalcoholic fatty liver disease as a risk factor of cardiovascular disease. Korean J Hepatology 14: 1-3. https://doi.org/10.3350/kjhep.2008.14.1.1
  11. Ko ES, Shin JH, Kang EY, Hwang YN, Seo AR, Song SW. 2008. Relationship between non-alcoholic fatty liver disease and metabolic syndrome in examiners of a health promotion center in Kyeong-ki do. Korean J Obesity 17: 37-44.
  12. Kim HC, Choi KS, Jang YH, Shin HW, Kim DJ. 2006. Normal serum aminotransferase levels and the metabolic syndrome: Korean National Health and Nutrition Examination Surveys. Yonsei Medical J 47: 542-550. https://doi.org/10.3349/ymj.2006.47.4.542
  13. Grattagliano I, Palmieri VO, Portincasa P, Moschetta A, Palasciano G. 2008. Oxidative stress-induced risk factors associated with the metabolic syndrome: a unifying hypothesis. J Nutr Biochem 19: 491-504. https://doi.org/10.1016/j.jnutbio.2007.06.011
  14. Park HS, Oh SW, Kang JH, Park YW, Choi JM, Kim YS, Choi WH, Yoo HJ, Kim YS. 2003. Prevalence and associated factors with metabolic syndrome in South Korea-from the Korean National Health and Nutrition Examination Survey, 1998-. Korean J Obesity 12: 1-14.
  15. Choi HM, Seo YK. 2004. Obesity and metabolic syndrome-How about their diet? Proceedings of the Korean Society of Obesity Conference. p 291-300.
  16. Moon HK, Kong JE. 2010. Assessment of nutrient intake for middle aged with and without metabolic syndrome using 2005 and 2007 Korean National Health and Nutrition Survey. Korean J Nutr 43: 69-78. https://doi.org/10.4163/kjn.2010.43.1.69
  17. Freire RD, Cardoso MA, Gimeno SG, Ferreira SR. 2005. Dietary fat is associated with metabolic syndrome in Japanese Brazilians. Diabetes Care 28: 1779-1785. https://doi.org/10.2337/diacare.28.7.1779
  18. Devaraj S, Wang-Polagruto J, Polagruto J, Keen CL, Jialal I. 2008. High-fat, energy-dense, fast-food-style breakfast results in an increase in oxidative stress in metabolic syndrome. Metabolism 57: 867-870. https://doi.org/10.1016/j.metabol.2008.02.016
  19. Yoo HJ, Kim YH. 2008. A study on the characteristics of nutrient intake in metabolic syndrome subjects. Korean J Nutr 41: 510-517.
  20. Park HS, Shin HC, Kim BS, Lee GY, Choi WS, Shin JA, Nam YD, Bae SP, Chun KS. 2003. Prevalence and associated factors of metabolic syndrome among adults in primary care. Korean J Obesity 12: 108-123.
  21. Lee HS, Kwun IS, Kwon CS. 2008. Anthropometric measurements and biochemical nutritional status of the older residents (50 years and over) in Andong area (2). J Korean Soc Food Sci Nutr 37: 1599-1608. https://doi.org/10.3746/jkfn.2008.37.12.1599
  22. Lee HS, Kwun IS, Kwon CS. 2008. Nutritional risks analysis based on the food intake frequency and health-related behaviors of the older residents (50 years and over) in Andong area (1). J Korean Soc Food Sci Nutr 37: 998-1008. https://doi.org/10.3746/jkfn.2008.37.8.998
  23. National cholesterol education program. 2001. Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285: 2486-2497. https://doi.org/10.1001/jama.285.19.2486
  24. Lee SY, Park HS, Kim DJ, Han JH, Kim SM, Cho GJ, Kim DY, Kwon HS, Kim SR, Lee CB, Oh SJ, Park CY, Yoo HJ. 2007. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res Clin Pract 75: 72-80. https://doi.org/10.1016/j.diabres.2006.04.013
  25. Genuth S, Alberti KG, Bennett P, Buse J, Defronzo R, Kahn R, Kitzmiller J, Knowler WC, Lebovitz H, Lernmark A, Nathan D, Palmer J, Rizza R, Saudek C, Shaw J, Steffes M, Stern M, Tuomilehto J, Zimmet P; Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. 2003. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 26: 3160-3167. https://doi.org/10.2337/diacare.26.11.3160
  26. Yagi K. 1984. Assay for blood plasma or serum. In Method in enzymology. Academic press, Orlando, FL, USA. Vol 105, p 328-331.
  27. Eliat-Adar S, Xu J, Goldbourt U, Zephier E, Howard BV, Resnick HE. 2008. Sex may modify the effects of macronutrient intake on metabolic syndrome and insulin resistance in American Indians: the strong heart study. J Am Diet Assoc 108: 794-802. https://doi.org/10.1016/j.jada.2008.02.023

Cited by

  1. Comparison of chronic disease risk by dietary carbohydrate energy ratio in Korean elderly: Using the 2007-2009 Korea National Health and Nutrition Examination Survey vol.47, pp.4, 2014, https://doi.org/10.4163/jnh.2014.47.4.247
  2. Dietary Patterns among the Elderly in Jeollanam-do Area based on Their Physical and Mental Function State vol.26, pp.4, 2013, https://doi.org/10.9799/ksfan.2013.26.4.783
  3. Metabolic Syndrome Risk by Dietary Fat Energy Ratio in Middle-aged Men - Using the 2012~2013 Korean National Health and Nutrition Examination Survey Data - vol.29, pp.6, 2016, https://doi.org/10.9799/ksfan.2016.29.6.1030