다양한 함수비를 가진 화강암의 열전도도 추정을 위한 실험적 모델

Empirical model to estimate the thermal conductivity of granite with various water contents

  • 투고 : 2010.01.04
  • 심사 : 2010.04.08
  • 발행 : 2010.06.30

초록

고준위폐기물처분장의 설계 및 장기 성능평가를 위한 입력 자료를 확보하기 위해, 한국원자력연구원 지하처분연구시설 부지에서 실시된 경사시추에서 얻은 암석 코어를 이용하여 화강암의 열전도도를 측정하였다. 열전도도에 미치는 함수비의 영향을 조사하기 위해 여러 가지 함수비에서 화강암의 열전도도를 측정하였다. 화강암의 광물 조성, 결정구조 및 이방성의 영향을 고려하지 않고, 비교적 측정이 용이한 유효공극률과 함수비를 이용하여 화강암의 열전도도를 예측할 수 있는 간단한 실험적 관계식이 제안되었다. 이 관계식은 지하처분연구시설 부지에서 채취한 유효공극률 2.7% 이하인 화강암의 열전도도를 10% 오차 이내로 예측할 수 있다.

To obtain the input data for the design and long-term performance assessment of a high-level waste repository, the thermal conductivities of several granite rocks which were taken from the rock cores from the declined borehole were measured. The thermal conductivities of granite were measured under the different conditions of water content to investigate the effects of the water content on the thermal conductivity. A simple empirical correlation was proposed to predict the thermal conductivity of granite as a function of effective porosity and water content which can be measured with relative ease while neglecting the possible effects of mineralogy, structure and anisotropy. The correlation could predict the thermal conductivity of granite with the effective porosity below 2.7% from the KURT site with an estimated error below 10%.

키워드

참고문헌

  1. 최희주 외, "한국형 고준위폐기물처분시스템," 한국원자력연구원 기술보고서, KAERI/TR-3563 /2008, 2008.
  2. 이종열, 조동건, 국동학, 이민수 최희주, 이양, "처분효율 향상을 위한 CANDU 사용후핵연료 처분개념 도출," 방사성폐기물학회지, 제7권 제4호, 229-236 (2009).
  3. 이재완, 조원진, "벤토나이트 완충재의 열수거동 및 장기건전성 연구," 방사성폐기물학회지, 제5권 제2호, 145-154 (2007).
  4. 박정민, 김형찬, 이영민, 송무영, "경기도, 강원도, 충청도 일대의 암석 열물성 특성 연구,"자원환경지질, 제40권 제6호, 761-769 (2007).
  5. R.S. Boynton, Chemistry and Technology of Lime and Limestone, Wiley, New York, p. 520. 1966.
  6. 조원진, 권상기, 최종원, "지하처분연구시설 부지화강암의 열전도도," 터널과 지하공간, 제18권, 제3호, 219-225 (2008).
  7. W.J. Cho., S. Kwon and J.W. Choi, "The thermal conductivity for granite with various water contents," Eng. Geol., 107, 167-171 (2009) https://doi.org/10.1016/j.enggeo.2009.05.012
  8. R.C. Weast, Handbook of Chemistry and Physics, The Chemical Rubber Co., Cleveland, Ohio, 52nd ed., p. E-5, 1972.
  9. Jr., I. Thomas, R.R. Frost, and R.D. Harvey, "Thermal conductivity of carbonate rocks," Eng. Geol., 7, 3-12 (1973). https://doi.org/10.1016/0013-7952(73)90003-3
  10. H. Zierfuss, "Heat conductivity of some carbonate rocks and clayey sandstones," Bull. Am. Assoc. Pet. Geol., 53(2), 251-260 (1969).
  11. J.R. Bloomer, "Thermal conductivities of mudstones in the United Kingdom," Q. J. Eng. Geol., 14, 357-362 (1981). https://doi.org/10.1144/GSL.QJEG.1981.014.04.12
  12. T. Midttoomme, E. Roaldset and P. Aagaard, "Thermal conductivity of selected claystones and mudstones from England," Clay Minerals, 33, 131-145 (1998). https://doi.org/10.1180/000985598545327
  13. F. Brigaud and G. Vasseur, "Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks," Geophysical Journal, 98, 525-542 (1989). https://doi.org/10.1111/j.1365-246X.1989.tb02287.x
  14. W.J. Cho, S. Kwon and J.H. Park, "KURT, A Small-Scale Underground Research Laboratory for the Research on High-Level Waste Disposal," Annals of Nucl. Energy, 35, 132-140 (2008). https://doi.org/10.1016/j.anucene.2007.05.011
  15. S. Kwon, W.J. Cho and P.S. Hahn, "Concept development of an underground research tunnel for validating the Korean reference HLW disposal system," Tunnel and Underground Space Tech., 21, 203-217 (2006). https://doi.org/10.1016/j.tust.2005.06.008
  16. Z.T. Bieniawski, Engineering Rock Mass Classifications, Willey, New York, 1989.
  17. 김건영, 고용권, 최종원, 최병열, 신선호, "한국원자력연구원 지하처분연구시설의 암석, 광물, 지하수, 지화학 특성,"2007 한국방사성폐기물학회 추계학술대회 논문요약집, 196-197 (2007).
  18. American Society for Testing and Materials, Annual Book of ASTM Standards, Vol. 04.07, 2002.
  19. K. Horai, "Thermal conductivity of rock-forming minerals," J. Geophys. Research, 76, 1278-1308 (1971). https://doi.org/10.1029/JB076i005p01278
  20. J. Anand, W.H. Sommerion and E. Gomaa, "Predicting thermal conductivities of formations from other known properties," Soc. Petrol. Eng. J., 13, 267-273 (1973). https://doi.org/10.2118/4171-PA
  21. D. Deming, "Estimation of the thermal conductivity anisotropy of rock with application to the determination of terrestrial heat flow," J. Geophys. Research, 99, 22087-22091 (1994). https://doi.org/10.1029/94JB02164
  22. M.G. Davis, D.S. Chapman and T.M. Van Wagoner, "Thermal conductivity anisotropy of metasedimentary and igneous rocks," J. Geophys. Research, 112, B05216 (2007).
  23. S.E. Hasan, "Thermophysical properties of rocks," Symp. Rock Mechanics, 3, 210-214 (1978).