실험실과 창의성 : 책임자와 실험실 문화의 역할을 중심으로

Laboratory and Creativity: The Role of the Leader and Laboratory Culture

  • 홍성욱 (서울대학교 생명과학부) ;
  • 장하원 (서울대학교 과학사 및 과학철학 협동과정)
  • 투고 : 2010.04.25
  • 심사 : 2010.06.06
  • 발행 : 2010.06.30

초록

과학적 창의성은 새롭고 중요한 과학적 사실, 방법, 이론, 설명, 측정기구와 이를 낳는 활동이다. 지금까지 창의성에 관한 연구가 많이 이루어졌지만, 대학의 실험실에서 팀단위의 협동 연구에서 발현되는 과학적 창의성에 대한 이해는 부족하다. 본 논문은 우리나라에서 대표적으로 창의적인 실험실로 간주되는 서울대학교 RNA 유전체학 연구실에 대한 미시적, 경험적 참여관찰과 이론적 분석을 통해 실험실의 창의성을 구성하는 요소를 찾아내는 것을 목표로 한다. 창의적인 업적은 순간적인 영감에 의해서 이루어지는 것이 아니라 복잡하고 지속적인 진화의 과정을 필요로 하며, 이 과정에서 다양한 지식과 능력을 지닌 연구자들에게 맞는 분업과 협동 체계가 중요하게 요구된다. 또한 이러한 구조를 활성화 하는 실험실 문화와 실험실 책임자의 리더십이 중요하게 작용함을 관찰할 수 있었다.

Scientific creativity is defined as the production of novel scientific facts, methods, theories, explanations, and instruments, as well as the entire process by which these novel facts, theories, explanations and instruments are generated. There have been many studies on scientific creativity, but there were few studies on the scientific creativity of a research team collaborating in laboratory settings. This paper aims to find the elements that constitute the creativity of a laboratory through empirical participant observation and theoretical analysis of RNA Biology Lab in Seoul National University - a lab which is considered to be the most creative laboratory in Korea. Creative accomplishments demand not just a sudden inspiration but also a complicated and continuous evolutionary process which requires a systematic division of labor and a corporation between researchers who have diverse knowledges and capabilities. Also, this paper shows that laboratory culture and leadership are an important factor for vitalizing the corporative structure of the laboratory.

키워드

참고문헌

  1. 강정하.최인수 (2008), 과학적 창의성: 지식의 성장으로서의 창의성에 대한 사례연구, 교육심리연구, 제22권 제3호, pp. 537-562.
  2. 김왕동 (2008), 공공연구조직의 창의성 영향요인 및 시사점, 서울: 과학기술정책연구원.
  3. 김인수 (1999), 거시조직이론, 서울: 무역경영사.
  4. 박종원 (2004), 과학적 창의성 모델의 제안: 인지적 측면을 중심으로, 한국과학교육학회지, 제24권 제2호, pp. 375-386.
  5. 송위진 (2008), 탈추격형 공공부문 연구활동의 특성 분석, 기술혁신연구, 제16권 제1호, pp. 239-259.
  6. 홍성욱 (2003), 과학적 창조성, 천재를 어떻게 이해할 것인가, 과학사상, 2003년 여름호, pp. 157-197.
  7. 홍성욱 (2004), 과학자의 창의성 - 천재의 신화를 넘어, 과학은 얼마나, pp. 220-255, 서울: 서울대학교 출판부.
  8. Amabile, T. M. et al. (1996), "Assessing the Work Environment for Creativity", Academy of Management Journal, Vol. 39, pp. 1154-1184. https://doi.org/10.2307/256995
  9. Andrews, F. M. (1979), Scientific Productivity, Cambridge: Cambridge University Press.
  10. Bass, B. M. (1985), Leadership and Performance beyond Expectation, New York: Free Press.
  11. Bass, B. M. and Abolio, B. J. (1995), MLQ Multifactor Leadership Questionnaire, Redwood City, CA: Mind Garden.
  12. Collins, H. M. (1974), "The TEA Set: Tacit Knowledge and Scientific Networks", Science Studies, Vol. 4, pp. 165-186. https://doi.org/10.1177/030631277400400203
  13. Collins, H. M. (2001), "Tacit Knowledge, Trust and the Q of Sapphire", Social Studies of Science, Vol. 31, pp. 71-85. https://doi.org/10.1177/030631201031001004
  14. Csikszentmihalyi, M. (1996), Creativity: Flow and the Psychology of Discovery and Invention, New York: Harper Collins.
  15. Darden, L. and Cook, M. (1994), "Reasoning Strategies in Molecular Biology: Abstractions, Scans and Anomalies", Philosophy of Science Association, Vol. 2, pp. 179-191.
  16. Doing, P. (2004), "Lab Hands and the Scarlet 'O': Epistemic Politics and (Scientific) Labor", Social Studies of Science, Vol. 34, pp. 299-323. https://doi.org/10.1177/0306312704043677
  17. Dong, P. (2007), "Give Me a Laboratory and I Will Raise a Discipline: The Past, Present and Future Politics of Laboratory Studies in STS", in Hackett, E. J. et al. eds., The Handbook of Science and Technology Studies, Third Edition, Cambridge, MA: MIT Press.
  18. Dunbar, K. (1997), "How Scientists Think: On-line Creativity and Conceptual Change in Science", in Ward, T., Smith, S., and Vaid, S. edS., Conceptual Structures and Processes: Emergence, Discovery and Change. Washington DC: APA Press.
  19. Ebadi, Y. M. and Utterback, J. M. (1984), "The Effects of Communication on Technological Innovation", Management Science, Vol. 30, pp. 572-585. https://doi.org/10.1287/mnsc.30.5.572
  20. Fujimura, J. H. (1987), "Constructing 'Do-able' Problems in Cancer Research: Articulating Alignment", Social Studies of Science, Vol. 17, pp. 257-293. https://doi.org/10.1177/030631287017002003
  21. Geertz, C. J. (1973), The Interpretation of Cultures: Selected Essays, New York: Basic Books.
  22. Gusterson, H. (1996), Nuclear Rites: A Weapons Laboratory at the End of the Cold War, Berkeley and Los Angeles: University of California Press.
  23. Han, J. et al. (2004), "The Drosha-DGCR8 Complex in Primary MicroRNA Processing", Genes & Development, Vol. 18, pp. 3016-3027. https://doi.org/10.1101/gad.1262504
  24. Han, J. et al. (2006), "Molecular Basis for the Recognition of Primary MicroRNAs by the Drosha-DGCR8 Complex", Cell, Vol. 125, pp. 887-901. https://doi.org/10.1016/j.cell.2006.03.043
  25. Han, J. et al. (2009), "Posttranscriptional Crossregulation between Drosha and DGCR8", Cell, Vol. 136, pp. 75-84. https://doi.org/10.1016/j.cell.2008.10.053
  26. Heinze, T. et al. (2007), "Identifying Creative Research Accomplishments: Methodology and Results for Nanotechnology and Human Genetics", Scientometrics, Vol. 70, pp. 125-152. https://doi.org/10.1007/s11192-007-0108-6
  27. Heinze, T. et al. (2009), "Organizational and Institutional Influences on Creativity in Scientific Research", Research Policy, Vol. 38, pp. 610-623. https://doi.org/10.1016/j.respol.2009.01.014
  28. Hemlin, S., Allwood, C. M. and Martin, B. R. (2004), Creative Knowledge Environments: The Influences on Creativity in Research and Innovation, Massachusetts: Edward Elgar Publishing.
  29. Heo, I. et al. (2008), "Lin28 Mediates the Terminal Uridylation of Let-7 Precursor MicroRNA", Molecular Cell, Vol. 32, pp. 276-284. https://doi.org/10.1016/j.molcel.2008.09.014
  30. Heo, I. et al. (2009), "TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation", Cell, Vol. 138, pp. 696-708. https://doi.org/10.1016/j.cell.2009.08.002
  31. Heo, I. et al. (2009), "Conserved MicroRNA miR-8/miR-200 and Its Target USH/FOG2 Control Growth by Regulating PI3K", Cell, Vol. 139, pp. 1096-1108. https://doi.org/10.1016/j.cell.2009.11.020
  32. Kim, Y. K. and Kim, V. N. (2007), "Processing of Intronic MicroRNAs", EMBO, Vol. 26, pp. 775-783. https://doi.org/10.1038/sj.emboj.7601512
  33. Kim, Y. K. et al. (2009), "Functional Links between Clustered MicroRNAs: Suppression of Cell-cycle Inhibitors by MicroRNA Clusters in Gastric Cancer", Nucleic Acids Research, Vol. 37, pp. 1672-1681. https://doi.org/10.1093/nar/gkp002
  34. Lee, Y. et al. (2002), "MicroRNA Maturation: Stepwise Processing and Subcellular Localization", EMBO, Vol. 21, pp. 4663-4670. https://doi.org/10.1093/emboj/cdf476
  35. Lee, Y. et al. (2003), "The Nuclear RNase III Drosha Initiates MicroRNA Processing", Nature, Vol. 425, pp. 415-419. https://doi.org/10.1038/nature01957
  36. Lee, Y. et al. (2004), "MicroRNA Genes Are Transcribed by RNA Polymerase II", EMBO, Vol. 23, pp. 4051-4060. https://doi.org/10.1038/sj.emboj.7600385
  37. Lee, Y. et al. (2006), "The Role of PACT in the RNA Silencing Pathway", EMBO, Vol. 25, pp. 522-532. https://doi.org/10.1038/sj.emboj.7600942
  38. Park, S. Y. et al. (2009), "miR-29 miRNAs Activate p53 by Targeting p85a and CDC42", Nature Structural and Molecular Biology, Vol. 16, pp. 23-29. https://doi.org/10.1038/nsmb.1533
  39. Yeom, K. H. et al. (2006), "Characterization of DGCR8/Pasha, the Essential Cofactor for Drosha in Primary miRNA Processing", Nucleic Acids Research, Vol. 34, pp. 4622-4629. https://doi.org/10.1093/nar/gkl458
  40. Hine, C. (2007), "Multi-sited Ethnography as a Middle Range Methodology for Contemporary STS", Science, Technology & Human Values, Vol. 32, pp. 652-671. https://doi.org/10.1177/0162243907303598
  41. Hollingsworth, R. (2002), Research Organizations and Major Discoveries in Twenthieth-century Science: A Case of Excellence in Biomedical Research, Berlin: WZB.
  42. Hollingsworth, R. (2004), "Institutionalizing Excellence in Biomedical Research: The Case of Rockefeller University", in Stapleton, D. H. ed., Creating a Tradition of Biomedical Research: Contributions to the History of the Rockefeller University, New York: Rockefeller University Press.
  43. Holmes, F. L. (1986), "Patterns of Scientific Creativity", Bulletin of the History of Medicine, Vol. 60, pp. 19-35.
  44. Howe, M. (1999), Genius Explained, Cambridge: Cambridge University Press.
  45. Katz, J. S. and Martin, B. R. (1997), "What Is Research Collaboration?", Research Policy, Vol. 26, pp. 1-18. https://doi.org/10.1016/S0048-7333(96)00917-1
  46. Knorr-Cetina, K. (1981), The Manufacture of Knowledge: An Essay on the Construvtivist and Contextual Nature of Science, Oxford: Pergamon Press.
  47. Latour, B. and Woolgar, S. (1979), Laboratory Life: The Social Construction of Scientific Facts, London: Sage.
  48. Latour, B. (1987), Science in Action: How to Follow Scientists and Engineers through Society, Cambridge, MA: Harvard University Press.
  49. Lynch, M. (1985), Art and Artifact in Laboratory Science: A Study of Shop Work and Shop Talk in a Research Laboratory, London: Routledge and Kegan Paul.
  50. Marcus, G. E. (1995), "Ethnography in/of the World System: The Emergence of Multi-sited Ethnography", Annual Review of Anthropology, Vol. 24, pp. 95-117. https://doi.org/10.1146/annurev.an.24.100195.000523
  51. Miller, A. (1996), Insights of Genius: Visual Imagery and Creativity in Science and Art, New York: Springer-Verlag.
  52. Mody, C. (2001), "A Little Dirt Never Hunt Anyone: Knowledge-Making and Contamination in Materials Science", Social Studies of Science, Vol. 31, pp. 7-36. https://doi.org/10.1177/030631201031001002
  53. Morrison, M. (2000), Unifying Scientific Theories: Physical Concepts and Mathematical Structures, Cambridge: Cambridge University Press.
  54. Nersessian, N. J. (2002), "Maxwell and 'the Method of Physical Analogy': Model-based Reasoning, Generic Abstraction, and Conceptual Change", in Malament, D. ed., Essays in the History and Philosophy of Science and Mathematics, LaSalle, IL: Open Court.
  55. Oldham, G. R. and Cummings, A. (1996), "Employee Creativity: Personal and Contextual Factors at Work", The Academy of Management Journal, Vol. 39, pp. 607-634. https://doi.org/10.2307/256657
  56. Pelz, D. C. and Andrews, F. M. (1966), "Autonomy, Coordination, and Simulation in Relation to Scientific Achievement", Behavioral Science, Vol. 12, pp. 89–97.
  57. Pfenninger, K. H. (2001), "Insights into the Foundations of Creativity: A Synthesis", in Pfenninger, K. H. and Shubik, V. R. eds., The Origins of Creativity, Oxford: Oxford University Press.
  58. Polanyi, M. (1958), Personal Knowledge: Towards a Post-critical Philosophy, Chicago, IL: University of Chicago Press.
  59. Polanyi, M. (1966), The Tacit Dimension, Gloucester, Mass, MA: Peter Smith.
  60. Rheinberger, H. (1997), Toward a History of Epistemic Things: Synthesizing Proteins in the Test Tube, Stanford: Stanford University Press.
  61. Rheinberger, H. (1998), "Experimental Systems, Graphematic Spaces", in Lenoir, T. ed., Inscribing Science: Scientific Texts and the Materiality of Communication, Stanford, CA: Stanford University Press.
  62. Schaffer, S. (1996), "Making up Discovery", in Boden, M. ed., Dimensions of Creativity, MA: The MIT Press.
  63. Schein, E. H. (2004), Organizational Culture and Leadership, San Francisco: Jossey-Bass.
  64. Shermer, M. (2001), "The Amadeus Myth: Mozart and the Myth of the Miracle of Genius", in Shermer, M., The Borderlands of Science: Where Sense Meets Nonsense, New York: Oxford University Press.
  65. Shrum, W., Genuth, J. and Chompalov, I. (2007), Structures of Scientific Collaboration, MA: The MIT Press.
  66. Spradley, J. P. (1980), Participant Observation, Orlando, EUA: Harcourt.
  67. Tagger, S. (2002), "Individual Creativity and Group Ability to Utilize Individual Creative Resources: A Multilevel Model", The Academy of Management Journal, Vol. 45, pp. 315-330. https://doi.org/10.2307/3069349
  68. Traweek, S. (1992), Beamtimes and Lifetimes: The World of High Energy Physicists, MA: Harvard University Press.
  69. Woodman, R. W., Sawyer, J. E. and Griffin, R. W. (1993), "Toward a Theory of Organizational Creativity", Academy of Management Review, Vol. 18, pp. 293-321.
  70. Wuchty, S., Jones, B. F. and Uzzi, B. (2007), "The Increasing Dominance of Teams in Production of Knowledge," Science, Vol. 316, pp. 1036-1039. https://doi.org/10.1126/science.1136099