랫드의 두개골결손부 모델에서 HA/PCL 지지체를 사용한 골이식 시 Matrigel의 효과

Effect of Matrigel for Bone Graft using Hydroxyapatite/Poly $\varepsilon$-caprolactone Scaffold in a Rat Calvarial Defect Model

  • Kim, Se-Eun (College of Veterinary Medicine, Chonnam National University) ;
  • Shim, Kyung-Mi (Department of Radiology, Nambu University) ;
  • Kim, Seung-Eon (Special Alloys Group, Korea Institute of Materials Science) ;
  • Choi, Seok-Hwa (College of Veterinary Medicine, Chungbuk National University) ;
  • Bae, Chun-Sik (College of Veterinary Medicine, Chonnam National University) ;
  • Han, Ho-Jae (College of Veterinary Medicine, Chonnam National University) ;
  • Kang, Seong-Soo (College of Veterinary Medicine, Chonnam National University)
  • 심사 : 2010.08.03
  • 발행 : 2010.08.30

초록

본 연구에서는 hydroxyapatite/poly $\varepsilon$-caprolactone composite (HA/PCL) 지지체와 matrigel을 랫드의 두개골 결손부 모델에 함께 이식 시의 골형성 정도를 평가하였다. 두개골결손부는 Sprague Dawley rat (n = 18)에서 수술적으로 형성하였으며 실험군은 Matrigel과 함께 HA/PCL 지지체를 이식한 군(M-HA/PCL group, n = 6)과 HA/PCL 지지체단독이식군(HA/PCL group, n = 6)으로 나누었고 대조군(CD group, n = 6)에는 아무 것도 이식하지 않았다. 수술 4주 후, 골형성은 방사선촬영, micro CT 및 조직검사를 통해 평가되었다. 방사선상에서 CD군의 골형성은 관찰되지 않았으나 HA/PCL과 M-HA/PCL군에서는 관찰되었고 골과 유사한 방사선비투과성이 M-HA/PCL군에서 더 많이 관찰되었다. Micro CT 평가에서 골부피는 HA/PCL군보다 M-HA/PCL군에서 더 높았으나 두 군 사이의 유의적 차이는 관찰할 수 없었다. 그러나 골밀도에서는 HA/PCL군보다 M-HA/PCL군이 더 유의적으로 높음을 확인할 수 있었다(p < 0.05). 조직학적 검사에서는 CD군에서 새로운 골은 원래 존재하던 골로부터만 형성되었으며 두개골결손부 내의 골형성은 보이지 않았다. HA/PCL군에서 새로운 골형성은 원래 존재하던 골로부터만 유래되었으나 M-HA/PCL군은 가장 많은 골형성을 보여주었으며 새로운 골이 원래 존재하던 골과 HA/PCL지지체 주변에서도 관찰되었다. 이러한 결과로 미루어볼 때 HA/PCL 지지체와 matrigel을 함께 사용하는 것이 골의 임계결손부에서 골형성을 증대시키는 효과적인 방법이 될 수 있을 것으로 생각된다.

The osteogenic potential of hydroxyapatite/poly $\varepsilon$-caprolactone composite (HA/PCL) scaffolds with matrigel was evaluated in a rat calvarial defect model. Calvarial defect formation was surgically created in Sprague Dawley rats (n = 18). HA/PCL scaffold was grafted with matrigel (M-HA/PCL group, n = 6) or without matrigel (HA/PCL group, n = 6). A critical defect group (CD group, n = 6) did not received a graft. Four weeks after surgery, bone formation was evaluated with radiography, micro computed tomography (micro CT) scanning, and histologically. No bone tissue formation was radiographically evident in the CD group. Bone tissue was radiographically evident in the HA/PCL and M-HA/PCL groups, however, there was more bone-similar opacity in the M-HA/PCL group. Micro CT analysis revealed that the bone volume of the M-HA/PCL group was higher than the HA/PCL group, however, no significant difference was found between the HA/PCL and M-HA/PCL groups. Bone mineral density in the M-HA/ PCL group was significantly higher than in the HA/PCL group (p < 0.05). Histologically, new bone was formed only from existing bone in the CD group, showing concavity without bone formation in the defect. In the HA/PCL group, new bone formation was only derived from existing bone, while in the M-HA/PCL group the largest bone formation was observed, with new bone tissue forming at the periphery of existing bone and around the HA/PCL scaffold with matrigel. The results indicate that the combination of HA/PCL scaffold with matrigel may be an effective means of enhancing bone formation in critical-sized bone defects.

키워드

참고문헌

  1. Bostman O, Pihlajamaki H. Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials 2000; 21: 2615-2621. https://doi.org/10.1016/S0142-9612(00)00129-0
  2. Cao F, Sadrzadeh Rafie AH, Abilez OJ, Wang H, Blundo JT, Pruitt B, Zarins C, Wu JC. In vivo imaging and evaluation of different biomatrices for improvement of stem cell survival. Tissue Eng Regen Med 2007; 1: 465-468. https://doi.org/10.1002/term.55
  3. Compston J. Bone quality: what is it and how is it measured? Arq Bras Endocrinol Metabol 2006; 50: 579-585.
  4. Cukierman E, Pankov R, Stevens DR, Yamada KM. Taking cell matrix adhesions to the third dimension. Science 2001; 294: 1708-1712. https://doi.org/10.1126/science.1064829
  5. Drosse I, Volkmer E, Capanna R, De Biase P, Mutschler W, Schieker M. Tissue engineering for bone defect healing: an update on a multi-component approach. Injury 2008; 39 (Suppl 2): S9-20.
  6. Fernandez-Tresguerres-Hernandez-Gil I, Alobera-Gracia MA, del-Canto-Pingarron M, Blanco-Jerez L. Physiological bases of bone regeneration I. Histology and physiology of bone tissue. Med Oral Patol Oral Cir Bucal 2006; 11: E47-51.
  7. Garvin KL, Miyano JA, Robinson D, Giger D, Novak J, Radio S. Polylactide/polyglycolide antibiotic implants in the treatment of osteomyelitis. A canine model. J Bone Joint Surg Am 1994; 76: 1500-1506.
  8. Gerhart TN, Roux RD, Hanff PA, Horowitz GL, Renshaw AA, Hayes WC. Antibiotic-loaded biodegradable bone cement for prophylaxis and treatment of experimental osteomyelitis in rats. J Orthop Res 1993; 11: 250-255. https://doi.org/10.1002/jor.1100110212
  9. Hench LL. Bioceramics: From concept to clinic. J Am Ceram Soc 1991; 74: 1487-1510. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
  10. Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech 1998; 31: 125-133.
  11. Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 2005; 15: 378-386.
  12. Kleinman HK, McGarvey ML, Hassell JR, Star VL, Cannon FB, Laurie GW, 13-Martin GR. Basement membrane complexes with biological activity. Biochemistry 1986; 25: 312-318. https://doi.org/10.1021/bi00350a005
  13. Lam CX, Hutmacher DW, Schantz JT, Woodruff MA, Teoh SH. Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res A 2009; 90: 906-919.
  14. Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 2008; 60: 184-198. https://doi.org/10.1016/j.addr.2007.08.041
  15. Meshel AS, Wei Q, Adelstein RS, Sheetz MP. Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat Cell Biol 2005; 7: 157-164. https://doi.org/10.1038/ncb1216
  16. Mourino V, Boccaccini AR. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. R Soc Interface 2010; 7: 209-227. https://doi.org/10.1098/rsif.2009.0379
  17. Pampaloni F, Stelzer EH, Masotti A. Three-dimensional tissue models for drug discovery and toxicology. Recent Pat Biotechnol 2009; 3: 103-117. https://doi.org/10.2174/187220809788700201
  18. Pitt CG, Gratzel MM, Kimmel GL. Aliphatic polyesters. 2. The degradation of poly(DL-lactide), poly(e-caprolactone) and their copolymers in vivo. Biomaterials 1981; 2: 215-220. https://doi.org/10.1016/0142-9612(81)90060-0
  19. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006; 27: 3413-3431. https://doi.org/10.1016/j.biomaterials.2006.01.039
  20. Stauber M, Rapillard L, van Lenthe GH, Zysset P, Muller R. Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness. J Bone Miner Res 2006; 21: 586-595. https://doi.org/10.1359/jbmr.060102
  21. Webb DJ, Horwitz AF. New dimensions in cell migration. Nat Cell Biol 2003; 5: 690-692. https://doi.org/10.1038/ncb0803-690
  22. Yunos DM, Bretcanu O. Boccaccini AR. Polymer-bioceramic composites for tissue engineering scaffolds. J Mater Sci 2008; 43: 4433-4442. https://doi.org/10.1007/s10853-008-2552-y